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Abstract10

Wildfires have emerged as one of the most pressing environmental challenges of11

the 21st century, with far-reaching economic and ecological consequences [1]. The12

buildup of combustible forest fuels is a key contributor to escalating wildfire risk,13

as decades of suppression policies have allowed fuels to accumulate well beyond14

historical levels [2]. Although fuel-reduction treatments are central to wildfire15

risk management [3], they remain underutilized [4], in part due to a limited16

understanding of their economic benefits [5]. Here, we provide large-scale empir-17

ical evidence on the cost-effectiveness of fuel treatments in mitigating wildfire18

damages. We integrate high-resolution data on wildfires, fuel treatments imple-19

mented by the U.S. Forest Service, suppression effort, and economic damages20

across the Western United States from 2017 to 2023. Using a quasi-experimental21

design, we find that fuel treatments significantly reduced wildfire spread and22

severity, avoiding an estimated $2.7 billion in damages by limiting structure23

loss, reducing CO2 emissions, and lowering PM2.5 exposure. We estimate each24

dollar invested in fuel treatments yields $3.42 in expected benefits. Larger treat-25

ments and prescribed burns are especially effective, suggesting that refinements26

to fuel treatment design could further enhance their impact. Our findings demon-27

strate the value of investing in fuel treatments and offer actionable insights for28

optimizing their implementation as wildfire risk intensifies.29
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adaptation31
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Introduction33

Wildfire activity has intensified dramatically in recent decades, leading to widespread34

economic, environmental, climate, and public health damages [1]. In the United States35

alone, total annual wildfire-related damages are estimated at $394–893 billion, equiv-36

alent to 2–4% of GDP [6]. These costs stem from property loss, fire suppression,37

adverse health outcomes, labor disruptions, and degraded ecosystem services [7–12].38

Recent estimates suggest that health damages from wildfire-induced PM2.5 exposure39

alone may exceed all other climate-related damages in the United States [13]. Globally,40

wildfire risk is projected to increase due to climate change, expanding development41

in the wildland-urban interface, and decades of fire suppression [14–16]. Yet despite42

mounting damages, key mitigation strategies, such as forest fuel reductions, remain43

underutilized and lack rigorous evaluation at scale.44

The accumulation of combustible material in forests, known as fuel loads, is a pri-45

mary driver of increasing wildfire severity [2]. Historically, frequent, low-severity fires46

helped regulate these loads. In California, for example, an estimated 5-12% of the47

landscape burned annually prior to 1800, much of it through Indigenous cultural burn-48

ing practices [17]. However, long-standing wildfire suppression policies have disrupted49

these fire cycles, allowing fuels to accumulate well beyond historical levels, threatening50

the functionality of forest ecosystems [18, 19].51

Fuel-reduction treatments (“fuel treatments”), such as prescribed burns and52

mechanical biomass removals, have become central to wildfire risk strategies. These53

treatments aim to reduce fuel loads, maintain open-canopy forest structures, and54

remove fire-prone species, thereby mimicking natural fire processes [20]. The U.S. For-55

est Service (USFS) has pledged to treat over 50 million acres—an area roughly the56

size of Utah—over the next decade through its Wildfire Crisis Strategy, reflecting a57

shift in federal wildfire policy toward more proactive risk reduction [3].58

Despite commitments to accelerate the pace and scale of fuel treatments, they59

remain underutilized [4], in part because public pressure and risk aversion skew wildfire60

management resources toward fire suppression rather than prevention [5]. Suppres-61

sion effort offers immediate and visible results, whereas the benefits of fuel treatments62

are delayed, uncertain, and difficult to observe. As a result, the value of fuel treat-63

ments is often underappreciated by the public and policymakers, leading to persistent64

barriers in their broader implementation, including regulatory, funding, and capacity65

constraints. These dynamics reflect a classic public goods problem: despite their broad66

societal benefits, there are insufficient incentives to invest in prevention measures67

without clear, credible evidence of their benefits.68

Demonstrating the benefits of fuel treatments, however, has proven difficult due69

to data limitations and the complexity of attributing reductions in wildfire spread,70

severity, and damages to fuel treatments. Until recently, comprehensive records on fuel71

treatment locations, wildfire perimeters, suppression effort, and damages were scarce72

or fragmented. Furthermore, wildfire behavior is shaped by the interaction of fuels,73

weather, topography, and suppression effort, making causal identification challeng-74

ing. Consequently, prior studies rely on model-based fire simulations or localized case75

studies that are difficult to generalize and often assess hypothetical treatment sce-76

narios rather than real-world implementations [21–23]. As a result, they offer limited77
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insights into whether current treatments are cost-effective or under which conditions78

they deliver the greatest benefits.79

We present large-scale empirical evidence on the effectiveness of fuel treatments80

in mitigating the spread, severity, and damages of wildfires. We focus on the Western81

United States due to its high wildfire risk, the increasing economic impacts wildfires82

have on the region, and the availability of uniquely rich, fine-scale spatial data [14,83

16]. Our analysis integrates high-resolution data on wildfire perimeters, locations of84

fuel treatment, suppression effort, fire simulation outputs, key determinants of fire85

behavior, and wildfire damages, spanning 285 wildfires that intersected with USFS86

fuel treatments across 11 western U.S. states from 2017 to 2023 (Fig. 1a). We focus on87

three of the primary contributors to wildfire damages—structure loss, CO2 emissions,88

and PM2.5 exposure, representing economic, climate change, and public health impacts89

and accounting for an estimated $185–540 billion in annual damages [6]. By monetizing90

the benefits of fuel treatments and identifying the characteristics that enhance their91

effectiveness, we aim to inform public policy and investment decisions for proactive92

wildfire risk mitigation.93

Wildfires and Fuel Treatments in the Western U.S.94

Wildfire has long shaped forest ecosystems in the Western U.S. For millennia, lightning95

ignitions and Indigenous burning practices maintained a fire regime of frequent, low-96

severity fires in much of the forest landscape, clearing excess vegetation and supporting97

ecological resilience. This regime was disrupted in the early 20th Century when the98

newly established USFS—tasked with overseeing many of the region’s most fire-prone99

landscapes—institutionalized wildfire suppression as a central management goal. Most100

notably, the 1935 “10 a.m. policy” aimed to extinguish all fires by the morning after101

ignition [26]. In the decades that followed, federal, state, and local agencies adopted102

similar approaches [27], effectively minimizing fire in the short term while creating103

long-term ecological and economic risks by allowing vegetative fuels to accumulate.104

In response to the ecological risks created by a century of fire suppression, pub-105

lic land agencies have increasingly adopted fuel treatments to restore natural fire106

regimes and reduce wildfire risk. These treatments generally include prescribed fire,107

which reintroduces low-intensity burns under controlled conditions, and mechanical108

thinning, which removes small-diameter trees and ladder fuels. By reducing excess109

fuels and modifying forest structure, these treatments aim to lower burn sever-110

ity and sustain critical ecosystem services, such as improved air and water quality,111

nutrient cycling, post-fire carbon storage, and biodiversity [28–32]. In practice, their112

placement often prioritizes the protection of homes, communities, and critical infras-113

tructure—particularly in the wildland–urban interface [33]. Because they are designed114

to protect assets at risk, fuel treatments are frequently located in areas where sup-115

pression efforts are most likely to be deployed, allowing them to serve a dual role:116

modifying fire behavior and improving the effectiveness of firefighting operations.117

Despite their ecological and operational benefits, fuel treatments remain underuti-118

lized relative to suppression, reflecting deeper institutional dynamics and economic119

incentives [5]. The political costs of allowing a fire to burn are immediate and visible,120
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Fig. 1: Wildfires and fuel treatments in the Western U.S. a, Perimeters of
all large wildfires (>1,000 acres) igniting in the western U.S. between 2017 and 2023.
Blue fires (N = 285) intersect with USFS fuel treatments and comprise our estimation
sample. Orange fires (N = 1,600) do not intersect with USFS fuel treatments. b-e,
Annual acres burned (millions), suppression costs (millions, 2023 USD), footprint acres
of fuel treatment (millions), and fuel treatment costs (millions, 2023 USD) for the
entire Western U.S. (orange) and USFS lands in the Western U.S. (blue). Footprint
acres represent the total unique area treated at least once within the year, regardless of
frequency. Suppression costs reflect only reported expenditures from incidents tracked
in the ICS-209 system and are available through 2020. Other outcomes extend through
2023.

while the benefits of preventive measures like fuel treatments are delayed and uncer-121

tain. As the saying goes, a “fire put out is a fire put off.” These incentives have led122

to considerably more resources directed towards wildfire suppression than prevention,123

with USFS expenditures on suppression exceeding fuel treatment spending by nearly124

tenfold (Fig. 1c,e).125

These institutional dynamics are compounded by operational constraints within126

the USFS, which manages the majority of forestland in the Western U.S. and accounts127

for most suppression costs and burned acreage (Fig. 1b,c). With just 30,000 employ-128

ees overseeing 193 million acres, it is difficult for the agency to scale up fuel treatment129

projects, which are often labor-intensive, logistically complex, and face a variety of130
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Fig. 2: Estimating the impact of fuel treatments. a, Daily progression of the
2017 Burro Fire in Arizona. The day and area burned are depicted in red (shaded from
white-dark red). The Burro Fire intersected with two fuel treatments: a broadcast
burn (blue) and biomass removal (black). Fire suppression effort (containment lines
and aerial retardant drops) is shown in purple, indicating where firefighting resources
were deployed to halt fire spread. b, To illustrate our research design, the Burro Fire
is divided into spatial cells—or “plots”—that have a unique direction and distance
from the ignition point [24]. A direction is considered “treated” (green) if it intersects
with at least one fuel treatment. Directions that do not intersect any fuel treatments
(gold) serve as controls. Plots are further classified as “yet-to-be treated” (light green),
“treated” (dark green), and “control” (gold). Excluded plots are shown in gray. Yet-
to-be-treated and control plots are used to estimate what fire spread and burn severity
would have been in the treated plots if they had not intersected with a fuel treatment,
following the imputation method of Borusyak et al. [25].

administrative constraints [34]. As a result, more acres burn each year than are treated131

(Fig. 1b,d). While fuel treatments do intersect with many wildfires (Fig. 1a), the persis-132

tent imbalance between treatment and suppression highlights a reactive posture—one133

we evaluate through the lens of cost-effectiveness.134

Estimating the Effect of Fuel Treatments on Wildfires135

We estimate the effects of fuel treatments on wildfire spread and severity, controlling136

for a range of factors that shape wildfire behavior. We examine how treatments vary by137
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treatment type, size, time since implementation, and proximity to suppression effort138

to identify conditions under which treatments are most effective. Using our estimated139

treatment effects, we predict counterfactual wildfire behavior in the absence of any140

fuel treatments to quantify avoided damages from structure loss, CO2 emissions, and141

PM2.5 exposure. Comparing these benefits to the costs of implementing treatments,142

we assess whether fuel treatments are a cost-effective wildfire mitigation strategy.143

Interpreting an empirical relationship between fuel treatments and wildfire behav-144

ior as causal is challenging due to the non-random allocation of treatments and145

suppression effort, creating the potential for selection bias. Both fuel treatments and146

fire suppression resources are allocated to protect areas of elevated wildfire risk, where147

fires are more likely to spread or threaten valuable assets [8, 24, 35–37]. Moreover, sup-148

pression resources are often deployed in ways that respond to the presence of nearby149

fuel treatments [38]. As a result, simple comparisons of wildfire behavior between150

treated and untreated areas are likely to be confounded by systematic differences in151

underlying fire risk and fire management.152

We address these challenges using a spatial difference-in-differences research design153

that exploits the quasi-random nature of wildfire ignition and directional spread. The154

precise location of ignition points is largely unpredictable, meaning the direction and155

distance at which a fire encounters a fuel treatment is likely to be independent of156

factors that also influence fire behavior. For each fire, we compare changes in fire157

behavior in directions that encounter treatments to those that do not, before and158

after the fire reaches a treatment, controlling for predictable fire spread patterns from159

fire simulation outputs, weather, and suppression effort (Fig. 2). A key strength of160

this design is that it naturally controls for unobserved factors that influence where161

treatments are typically placed—often near assets or in high-risk areas—by comparing162

a fire’s behavior along the same path before and after treatment, net of common163

distance-related trends across fires. Under the assumption of “parallel trends”—that,164

in the absence of treatment, fire behavior would have evolved similarly in treated and165

untreated directions—our approach yields credible estimates of the causal effect of166

fuel treatments on wildfire spread and severity. Consistent with this assumption, we167

find no evidence that fire behavior evolves differently between treated and untreated168

directions before encountering a fuel treatment (Fig. 3a,b, left of the dashed line).169

Fuel Treatments Reduce Fire Spread & Severity170

We estimate the impact of fuel treatments on the probability of fire spreading to171

an adjacent plot and the burn severity of a plot, conditional on the plot burning172

(Figure 3a-b, right of the dashed line). The likelihood of a fire spreading declines by173

13.5 percentage points, on average, immediately after encountering a fuel treatment;174

however, the effect dissipates with distance, shrinking to 9.6 percentage points at 1.5175

km and becoming negligible by 2.5 km. In contrast, burn severity exhibits an imme-176

diate and sustained reduction of 7.5–10.7% over the same distance. This difference177

reflects the nature of fire behavior: while fire spread is immediately influenced by a178
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discontinuity in forest fuels—either halting or redirecting the fire’s path—burn sever-179

ity depends on the overall reduction in surface and canopy fuels, which can moderate180

fire intensity even after the fire passes beyond the initial treatment boundary [39, 40].181

Our findings are robust across a range of alternative specifications and sensitivity182

analyses (Supplementary Tables S5—S11). In particular, a matching-based approach183

that improves the comparability of treated and untreated plots based on observable184

characteristics yields similar and more significant reductions in fire spread and sever-185

ity (Extended Data Fig. 1), demonstrating that our results do not simply reflect186

pre-existing differences between plots. To further test the validity of our spatial187

difference-in-differences design, we conduct a placebo test using plots with planned-188

but-not-implemented fuel treatments. These projects were selected for treatment but189

never completed, allowing us to assess whether fire spread patterns shift discontinu-190

ously at the boundaries of areas selected for treatment, even in the absence of actual191

fuel reductions. We find no evidence of an effect on fire spread in these placebo192

plots (Extended Data Fig. 2), further supporting the credibility of the parallel trends193

assumption. However, we do observe slightly elevated burn severity in these plots, con-194

sistent with treatments being targeted to high-risk areas. As a result, our estimates195

may understate fire severity in the absence of fuel treatments, indicating that our196

estimates likely represent conservative lower bounds.197

We also quantify the cumulative effects of fuel treatments on fire spread and sever-198

ity using a survival analysis framework, reflecting the fact that preventing fire spread199

at one location decreases the likelihood of continued spread beyond it. We estimate200

these effects using the unconditional probability of burning, defined as the product201

of the probability that fire reaches a plot and the probability that the plot burns if202

reached. We track how this unconditional probability declines with distance from the203

point where a fire first encounters a fuel treatment. Treated directions are estimated204

to be 12.1 percentage points less likely to continue burning beyond 2.5 km than if they205

had not encountered a fuel treatment (Fig. 4a & Extended Data Fig. 3a), correspond-206

ing to a 36% reduction in total burned area. Burn severity also declines over the same207

distance, with treated plots experiencing 20–30% lower severity than if they had not208

been treated (Fig. 4b & Extended Data Fig. 3b), equivalent to a 26% reduction in209

moderate-to high-severity fire.210

The Determinants of Fuel Treatment Effectiveness211

Fire progression maps reveal substantial heterogeneity in the effectiveness of fuel treat-212

ments in halting wildfire spread (Extended Data Fig. 4). We examine four factors that213

may explain this heterogeneity: treatment type, time since treatment implementation,214

treatment size, and proximity to suppression resources.215

Previous research in fire ecology has shown that treatments are most effective when216

recently completed and when mechanical thinning is combined with prescribed burning217

[41]. Our results reinforce the importance of treatment type: treatments that include218

prescribed fire—either alone or alongside mechanical thinning—are significantly more219

effective than mechanical-only treatments (Fig. 5c). These effects are especially pro-220

nounced immediately after encountering a fuel treatment, indicating that prescribed221
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Fig. 3: Conditional effects of fuel treatments on fire spread and burn sever-
ity. a-b, Estimated average effects of fuel treatments on (a) the probability of a fire
spreading, conditional on reaching a plot, and (b) burn severity, conditional on burn-
ing. The x-axis represents the distance from where a fire first intersects with a fuel
treatment in a given direction (0.5 km bins). The vertical dashed line indicates the
point of first interaction with a fuel treatment. Estimated treatment effects represent
changes in fire behavior after encountering a treatment, comparing treated directions
to untreated directions at the same distance from a fire’s origin after controlling for
fire-level characteristics and key determinants of fire behavior. Pre-treatment effects
(left of the dashed line) are measured relative to 2.5 km before the fuel treatment (dis-
tance bin -2.5 to -2). Post-treatment effects (right of the dashed line) are estimated
using imputation following the method of Borusyak et al. [25]. Error bars represent
95% confidence intervals, clustering at the fire level.

fire enhances the short-term effectiveness of treatments in halting fire spread. We also222

find that larger treatments lead to greater reductions in fire spread and burn sever-223

ity (Fig. 5b and Extended Data Fig. 6), which may be due to their having more224

interior area relative to their boundary, thereby reducing exposure to surrounding225

fuels and making them more effective at disrupting fuel continuity and slowing fire226

progression [42–44]. In contrast, we find limited evidence that time since treatment227

significantly affects fire spread within a 10-year window (Fig. 5d), though it does228

influence conditional burn severity (Extended Data Fig. 5).229

Fuel treatments are substantially more effective at reducing wildfire spread when230

supplemented with suppression resources. We estimate that plots receiving suppression231

effort are 11-22 percentage points less likely to experience fire spread up to 2 km after232

encountering a fuel treatment than they would have without fuel treatments (Fig. 5a).233
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Fig. 4: Cumulative effect of fuel treatments on fire spread and burn sever-
ity. a-b, Estimated average unconditional (a) probability of burning and (b) burn
severity for all treated directions 2.5 km after a fire’s initial interaction with a fuel
treatment. The x-axis represents the distance from where a fire first intersects with a
fuel treatment in a given direction (km). “With treatment” outcomes (blue) represent
the observed average burn probability and severity. “Without treatment” outcomes
(orange) represent the estimated counterfactual of what burn probability and sever-
ity would have been in the absence of a fuel treatment. 95% confidence intervals are
based on 1,000 bootstrap simulations, resampling fires with replacement.

In contrast, fuel treatments without suppression effort are effective at reducing fire234

spread only within 0.5 km, with an estimated six percentage point reduction relative235

to no treatment. Importantly, these effects cannot be explained solely by suppression236

effort being strategically placed in areas close to fuel treatments: we find similarly237

large reductions in fire spread even when comparing plots with both fuel treatments238

and suppression effort to those with suppression effort alone (Table S7). This finding239

supports the idea that fuel treatments enhance suppression effectiveness by reducing240

flame lengths and the rate of heat release along the fire perimeter, thereby making it241

easier for firefighters to contain fire spread [45, 46]. In contrast, we do not find system-242

atic differences in fuel treatment effectiveness on conditional burn severity between243

treated plots with and without suppression effort (Extended Data Fig. 5).244

The Economic Benefits of Fuel Treatments245

We estimate the economic benefits of fuel treatments by comparing observed wildfire246

spread and damages from 2017-2023 to a counterfactual scenario in which there were247

no USFS fuel treatments to limit fire progression. We predict fire spread in the absence248
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Fig. 5: Heterogeneous treatment effects of fuel treatments on the proba-
bility of fire spread. a-d, Estimated average treatment effects of fuel treatments
on the probability of a fire spreading, conditional on reaching a plot, by: (a) suppres-
sion resources (with or without), (b) treatment size (small, medium, or large), (c)
treatment type (mechanical thinning, prescribed burn, or both), and (d) time since
treatment (short, medium, or long) within 2.5 km of the initial treatment-fire inter-
action. The x-axis represents the distance from where a fire first intersects with a fuel
treatment in a given direction (0.5 km bins). Estimated treatment effects are gener-
ated by estimating our spatial difference-in-differences model on subsamples defined
by each source of heterogeneity, retaining only treated observations within each cat-
egory while using the full set of never-treated observations as controls. Error bars
represent 95% confidence intervals, clustering at the fire level. Estimates in (a) are
generated using a subsample of 178 fires for which we have full fire suppression effort
data. Treatment effects are estimated using the method of Borusyak et al. [25].

of fuel treatments for areas that were, in fact, treated. This comparison reveals that249

fuel treatments reduced total burned area by 151,231 acres—equivalent to a 36%250

reduction (Table 1).251

To quantify economic benefits, we focus on two primary outcomes: saved struc-252

tures and avoided emissions. Using high-resolution data on structures, we estimate253

that fuel treatments prevented the loss of 3,859 buildings. Assuming emissions are254
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proportional to acres burned, we estimate that fuel treatments avoided 2.75 million255

tons of CO2 and 26,075 tons of PM2.5. Combining estimates of fire-level PM2.5 expo-256

sure and mortality risk from the literature [11, 47], we estimate that 28 premature257

deaths were averted. Monetizing these impacts yields $833 million from avoided struc-258

ture loss, $500 million from reduced CO2 emissions, and $1.4 billion from avoided259

PM2.5-related mortality and productivity losses. Dividing these benefits by the cost260

of implementing treatments yields a benefit-cost ratio of $39.35 for treatments that261

intersected with wildfires (Table 1).262

While this benefit-cost ratio is substantial, it only captures the realized benefits263

of treatments that intersected with fires and does not reflect the uncertainty in land264

managers’ decision-making when siting treatments without knowing when and where265

future fires will occur. To evaluate cost-effectiveness under this uncertainty, we cal-266

culate an “ex-ante” benefit-cost ratio that accounts for all fuel treatments conducted267

by the USFS, considering both the likelihood that a treatment intersects with a fire268

during its effective lifetime and how this likelihood varies across fuel treatment sizes.269

Consistent with prior work [48], we find that larger fuel treatments are more likely270

to intersect with a fire over a 10-year horizon (Extended Data Fig. 7): 70.4% for large271

treatments (>2,400 acres), compared to 38.5% and 25.4% for medium (600–2,400272

acres) and small treatments (75–600 acres), respectively. Larger treatments also deliver273

greater benefits per treatment: $9.2 million for large, $3.7 million for medium, and274

$818,000 for small treatments, on average. Combining these size-specific benefits with275

their respective probabilities of fire interaction and dividing by their implementation276

costs yields expected benefit-cost ratios of $4.88 for large, $3.21 for medium, and $2.69277

for small fuel treatments (Table 1).278

Aggregating across all USFS fuel treatments that could have intersected with wild-279

fires between 2017 and 2023, we estimate an overall ex-ante benefit-cost ratio of $3.42,280

suggesting that each dollar invested in fuel treatments yields over three dollars in281

expected avoided damages (Table 1). The median ex-ante benefit-cost ratio is even282

higher ($8.26), indicating that while most projects are cost-effective, a small num-283

ber of low-performing treatments skew the distribution—highlighting the potential for284

improved targeting and design.285

Discussion286

A century of wildfire suppression policies has disrupted fire-adapted forest ecosystems,287

allowing fuel loads to accumulate, driving larger, more severe, and costlier wildfires.288

Our findings demonstrate that fuel-reduction treatments are a cost-effective strategy289

to mitigate these impacts. We estimate that fuel treatments interacting with wildfires290

between 2017 and 2023 significantly decreased wildfire spread and severity, resulting in291

avoided damages from structure loss, CO2 emissions, and PM2.5-related health impacts292

totalling over $2.7 billion. On average, fuel treatments are expected to generate $3.42293

in benefits for every dollar invested, demonstrating that they are not only ecologically294

beneficial but also economically justified.295
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Table 1: Counterfactual Benefits of USFS Fuel Treatments

A. Physical Savings

Acres Structures CO2 PM2.5

Burned Lost Emissions (t) Emissions (t) Deaths

151,231 3,859 2,749,051 26,075 28

B. Economic Costs & Savings

Treatment Housing Social Cost Health &
Cost Values of Carbon Labor C-BCR

$69,829,517 $833,009,806 $508,574,362 $1,406,529,722 $39.35

C. Ex-Ante Benefit-Cost Ratios

Small Medium Large
(75-600) (600-2400) (> 2400) Total Median

2.69 3.21 4.88 3.42 8.26

A. Estimated physical savings from fuel treatments interacting with wild-
fires in our sample. B. Economic costs (i.e., expenditures) and estimated
savings from fuel treatments. C-BCR denotes the benefit-cost ratio con-
ditional on fuel treatments interacting with a fire. C. Predicted ex-ante
benefit-cost ratios for all U.S. Forest Service treatments conducted from
2007–2023 in the Western U.S., categorized by treatment size.

Despite their cost-effectiveness, opportunities to improve the design and targeting296

of fuel treatments remain. We find that treatments involving prescribed fire are espe-297

cially effective at disrupting fire spread, which is consistent with findings in the fire298

ecology literature that prescribed burns create more continuous fuel breaks by reduc-299

ing surface and fine fuels that mechanical thinning often leaves behind [41]. We also300

provide evidence that larger treatments are not only more effective at limiting wildfire301

spread but also more cost-effective at reducing damages. This finding reinforces recent302

policy debates that advocate for consolidating fuel-treated areas into fewer, larger,303

and more strategically located treatments [49]. These insights are made possible by304

our large-scale empirical framework, which evaluates how treatments influence wild-305

fire spread at the landscape scale, capturing spatial dynamics that localized studies306

often cannot [50].307

Our findings lend support to U.S. federal and state agencies that have committed to308

accelerating the pace and scale of fuel-reduction treatments. However, land managers309

face a litany of legal and regulatory barriers to implementing large-scale treatments,310

including environmental review requirements under the National Environmental Policy311

Act (NEPA) or species protections under the Endangered Species Act (ESA) [51].312

These constraints underscore the need to consider policy reforms that enable more313

proactive landscape-scale interventions [34, 52]. The significant divergence between314

the overall and median benefit-cost ratios (Table 1) further emphasizes the importance315

of targeting treatments effectively to maximize returns. By providing a data-driven316

framework and open-source tools, our study offers practical guidance for evaluating the317

cost-effectiveness of fuel treatments, which can be readily applied across different states318

and regions. Identifying which treatments are most likely to yield high returns can319
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support more strategic, evidence-based decision making—a need made more urgent320

by recent federal budget cuts and escalating wildfire risks.321

Our estimated benefit-cost ratio of 3.42 is broadly consistent with, though some-322

what more conservative than, those reported in prior literature. For instance, a recent323

meta-analysis finds an average benefit-cost ratio of 7.04 across 16 studies encompass-324

ing a wide range of benefits [23]. Unlike our empirical approach, however, these studies325

are largely simulation-based and often model scenarios involving hypothetical, large-326

scale implementation of fuel treatments, in terms of both the total area treated and327

the size of individual projects. In contrast, our study evaluates the effectiveness of real-328

world fuel treatment projects implemented by the USFS, which are generally smaller329

in scale, more fragmented, and subject to operational and institutional constraints.330

Moreover, our benefit-cost ratio also explicitly incorporates the uncertainty that a331

treated area will intersect with a fire—a factor not always addressed or realistically332

modeled in prior studies. These distinctions reinforce the policy relevance of our find-333

ings, suggesting that returns to fuel treatments could increase if their implementation334

were scaled and coordinated more effectively.335

Our analysis also omits several important pathways through which treatments336

may provide additional benefits. For example, we do not assess the role of treatments337

in reducing the likelihood of ignition or deterring small fires from becoming large338

and destructive—a mechanism shown to substantially lower suppression costs [38].339

Nor do we account for a broader suite of economic, ecological, and social benefits,340

including avoided suppression costs, improved water supply and quality, revenues from341

thinning operations, local job creation, and the non-use value of restored ecosystems,342

among others [53–56]. In addition, our analysis is limited to USFS treatments and343

does not evaluate the effectiveness of fuel treatments on private lands or by other344

public agencies, which may differ in their approaches and effectiveness in mitigating345

wildfire risks. Future research that incorporates these additional benefit streams and346

land ownership types will be essential to fully assess the economic and ecological value347

of fuel management strategies.348

While our estimate of fuel treatment benefits is likely conservative, the associated349

cost estimates may also be understated. For example, we do not consider additional350

costs from prescribed burns, such as PM2.5 or CO2 emissions, nor do we account for351

foregone carbon sequestration resulting from the removal of forest fuel biomass. Both352

could represent meaningful components of the full social cost of implementing fuel353

treatments, although evidence suggests that prescribed burns typically emit far less354

than the wildfires they help prevent [57]. A full accounting of emissions, sequestration,355

and other ecosystem service tradeoffs would require detailed modeling that is beyond356

the scope of this study. Incorporating these dynamics is an important direction for357

future research to better quantify the net social returns to fuel treatment investments.358

Our analysis also abstracts from dynamic interactions between fuel treatments and359

fire suppression strategies. While we find that fuel treatments are especially effective360

when complemented with suppression effort, we do not provide insight into how sup-361

pression resources are allocated within fires or whether such allocations would differ362

in the absence of fuel treatments. Our benefit-cost analysis implicitly assumes that363
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suppression effort would not have been deployed differently in the absence of treat-364

ments—a simplification that warrants further investigation. Previous work suggests365

that the presence of nearby fuel treatments may reduce the need for costly suppres-366

sion resources, freeing up limited resources to be allocated elsewhere [38]. Yet little is367

known about how this tradeoff plays out in real-time within a fire [58]. Future research368

is needed to explore how suppression resources and fuel treatment placement can be369

jointly optimized to maximize the impact of scarce wildfire management resources.370

Despite the clear economic rationale for fuel treatments, capacity and funding371

constraints pose a significant challenge to scaling them up. These constraints are com-372

pounded by land managers’ incentives to prioritize short-term fire suppression effort373

over long-term preventive treatments, as immediate fire response helps avoid public374

backlash and lawsuits, while the benefits of prevention may not be immediately visible.375

Importantly, fuel treatments also exhibit the characteristics of a public good: many of376

their benefits, particularly from reduced smoke exposure, extend beyond the jurisdic-377

tion or landowner that implements them [59]. This geographic mismatch between who378

pays and who benefits can discourage local investment and create incentives for pri-379

vate landowners to free-ride on publicly funded mitigation. Addressing these challenges380

will require innovative policy solutions, such as targeted subsidies, creative funding381

mechanisms, and public-private partnerships, that both align incentives across juris-382

dictions and alleviate capacity and funding constraints, unlocking more effective and383

widespread fuel treatment projects on both public and private lands.384

In sum, our results provide compelling evidence that fuel treatments are a cost-385

effective strategy for forest restoration and wildfire mitigation, offering a promising386

pathway to address one of the most urgent and costly environmental challenges of387

the 21st century. Yet realizing their full potential will require more than scientific388

consensus—it will demand bold policy reform. Thoughtful consideration of environ-389

mental policy reform, coupled with targeted economic incentives, will be essential to390

overcoming the barriers that limit effective fuel treatment implementation at scale.391

14



References392

[1] Burke, M. et al. The changing risk and burden of wildfire in the united states.393

Proceedings of the National Academy of Sciences 118, e2011048118 (2021).394

[2] Miller, J. D., Safford, H. D., Crimmins, M. & Thode, A. E. Quantitative Evidence395

for Increasing Forest Fire Severity in the Sierra Nevada and Southern Cascade396

Mountains, California and Nevada, USA. Ecosystems 12, 16–32 (2009).397

[3] USFS, U. S. F. S. Wildfire Crisis Strategy Implementation Plan. Tech. Rep.,398

United States Forest Service (2022).399

[4] Kolden, C. A. We’re Not Doing Enough Prescribed Fire in the Western United400

States to Mitigate Wildfire Risk. Fire 2 (2019).401

[5] North, M. P. et al. Reform forest fire management. Science 349, 1280–1281402

(2015).403

[6] JEC, J. E. C. D. Climate-exacerbated wildfires cost the U.S. between $394 to404

$893 billion each year in economic costs and damages. Tech. Rep., Joint Economic405

Committee Democrats (2023).406

[7] Wang, Y. & Lewis, D. J. Wildfires and climate change have lowered the eco-407

nomic value of western U.S. forests by altering risk expectations. Journal of408

Environmental Economics and Management 123, 102894 (2024).409

[8] Baylis, P. & Boomhower, J. The Economic Incidence of Wildfire Suppression in410

the United States. American Economic Journal: Applied Economics 15, 442–73411

(2023).412

[9] Molitor, D., Mullins, J. T. & White, C. Air pollution and suicide in rural413

and urban America: Evidence from wildfire smoke. Proceedings of the National414

Academy of Sciences 120, e2221621120 (2023). Doi: 10.1073/pnas.2221621120.415

[10] Heft-Neal, S. et al. Emergency department visits respond nonlinearly to wild-416

fire smoke. Proceedings of the National Academy of Sciences 120, e2302409120417

(2023). Doi: 10.1073/pnas.2302409120.418

[11] Borgschulte, M., Molitor, D. & Zou, E. Y. Air Pollution and the Labor Market:419

Evidence from Wildfire Smoke. The Review of Economics and Statistics 1–46420

(2022).421

[12] Smith, V. K. Nonmarket Valuation of Environmental Resources: An Interpretive422

Appraisal. Land Economics 69, 1–26 (1993).423

[13] Qiu, M. et al. Mortality burden from wildfire smoke under climate change. Tech.424

Rep., National Bureau of Economic Research (2024).425

15



[14] Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change426

on wildfire across western US forests. Proceedings of the National Academy of427

Sciences 113, 11770–11775 (2016). Doi: 10.1073/pnas.1607171113.428

[15] Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises429

wildfire risk. Proceedings of the National Academy of Sciences 115, 3314–3319430

(2018). Doi: 10.1073/pnas.1718850115.431

[16] Schoennagel, T. et al. Adapt to more wildfire in western North American forests as432

climate changes. Proceedings of the National Academy of Sciences 114, 4582–4590433

(2017).434

[17] Stephens, S. L., Martin, R. E. & Clinton, N. E. Prehistoric fire area and emissions435

from California’s forests, woodlands, shrublands, and grasslands. Forest Ecology436

and Management 251, 205–216 (2007).437

[18] North, M. P. et al. Operational resilience in western US frequent-fire forests.438

Forest Ecology and Management 507, 120004 (2022).439

[19] Prichard, S. J. et al. Adapting western North American forests to climate change440

and wildfires: 10 common questions. Ecological Applications: A Publication of the441

Ecological Society of America 31, e02433 (2021).442

[20] Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments.443

Relative Risk Assessments for Decision –Making Related To Uncharacteristic444

Wildfire 211, 83–96 (2005).445

[21] Taylor, M. H., Sanchez Meador, A. J., Kim, Y.-S., Rollins, K. & Will, H. The446

Economics of Ecological Restoration and Hazardous Fuel Reduction Treatments447

in the Ponderosa Pine Forest Ecosystem. Forest Science 61, 988–1008 (2015).448

[22] Hunter, M. E. & Taylor, M. H. The Economic Value of Fuel Treatments: A449

Review of the Recent Literature for Fuel Treatment Planning. Forests 13 (2022).450

[23] Hjerpe, E. E., Colavito, M. M., Waltz, A. E. & Meador, A. S. Return on invest-451

ments in restoration and fuel treatments in frequent-fire forests of the American452

west: A meta-analysis. Ecological Economics 223, 108244 (2024).453

[24] Plantinga, A. J., Walsh, R. & Wibbenmeyer, M. Priorities and Effectiveness in454

Wildfire Management: Evidence from Fire Spread in the Western United States.455

Journal of the Association of Environmental and Resource Economists 9, 603–639456

(2022). Doi: 10.1086/719426.457

[25] Borusyak, K., Jaravel, X. & Spiess, J. Revisiting Event-Study Designs: Robust458

and Efficient Estimation. The Review of Economic Studies 91, 3253–3285 (2024).459

16



[26] Loveridge, E. W. The Fire Suppression Policy of the U. S. Forest Service. Journal460

of Forestry 42, 549–554 (1944).461

[27] Pyne, S. J. Year of the Fires: The Story of the Great Fires of 1910 (Mountain462

Press Pub. Co, Missoula, Mont, 2008).463

[28] Converse, S. J., White, G. C., Farris, K. L. & Zack, S. Small Mammals and Forest464

Fuel Reduction: National-Scale Responses to Fire and Fire Surrogates. Ecological465

Applications 16, 1717–1729 (2006).466

[29] Boerner, R. E. J., Huang, J. & Hart, S. C. Impacts of Fire and Fire Surro-467

gate treatments on forest soil properties: A meta-analytical approach. Ecological468

Applications 19, 338–358 (2009).469

[30] Finkral, A. & Evans, A. The effects of a thinning treatment on carbon stocks in470

a northern Arizona ponderosa pine forest. Large-scale experimentation and oak471

regeneration 255, 2743–2750 (2008).472

[31] Yocom Kent, L. L. et al. Interactions of fuel treatments, wildfire severity, and473

carbon dynamics in dry conifer forests. Forest Ecology and Management 349,474

66–72 (2015).475

[32] Richter, C. et al. The species diversity × fire severity relationship is hump-shaped476

in semiarid yellow pine and mixed conifer forests. Ecosphere 10, e02882 (2019).477

[33] State of California. California’s Wildfire and Forest Resilience Action Plan (2021).478

[34] North, M. et al. Constraints on Mechanized Treatment Significantly Limit479

Mechanical Fuels Reduction Extent in the Sierra Nevada. Journal of Forestry480

113, 40–48 (2015).481

[35] Tubbesing, C. L. et al. Strategically placed landscape fuel treatments decrease482

fire severity and promote recovery in the northern Sierra Nevada. Forest Ecology483

and Management 436, 45–55 (2019).484

[36] Finney, M. A. A computational method for optimising fuel treatment locations.485

International Journal of Wildland Fire 16, 702–711 (2007).486

[37] Anderson, S. E., Plantinga, A. J. & Wibbenmeyer, M. Inequality in Agency487

Response: Evidence from Salient Wildfire Events. The Journal of Politics 85,488

625–639 (2023).489

[38] Strabo, F. & Reimer, M. Before the burn: The economic benefits of fuel-reduction490

treatments in wildfire-prone forests. Available at SSRN 5064565 (2024).491

[39] Schmidt, D. A., Taylor, A. H. & Skinner, C. N. The influence of fuels treatment492

and landscape arrangement on simulated fire behavior, Southern Cascade range,493

California. Forest Ecology and Management 255, 3170–3184 (2008).494

17



[40] Finney, M. A. Design of Regular Landscape Fuel Treatment Patterns for495

Modifying Fire Growth and Behavior. Forest Science 47, 219–228 (2001).496

[41] Kalies, E. L. & Yocom Kent, L. L. Tamm Review: Are fuel treatments effective497

at achieving ecological and social objectives? A systematic review. Forest Ecology498

and Management 375, 84–95 (2016).499

[42] Prichard, S. J. & Kennedy, M. C. Fuel treatments and landform modify landscape500

patterns of burn severity in an extreme fire event. Ecological Applications 24,501

571–590 (2014).502

[43] Safford, H., Stevens, J., Merriam, K., Meyer, M. & Latimer, A. Fuel treatment503

effectiveness in California yellow pine and mixed conifer forests. Forest Ecology504

and Management 274, 17–28 (2012).505

[44] Kennedy, M. C. & Johnson, M. C. Fuel treatment prescriptions alter spatial506

patterns of fire severity around the wildland–urban interface during the Wallow507

Fire, Arizona, USA. Forest Ecology and Management 318, 122–132 (2014).508

[45] Urza, A. K., Hanberry, B. B. & Jain, T. B. Landscape-scale fuel treatment509

effectiveness: Lessons learned from wildland fire case studies in forests of the510

western United States and Great Lakes region. Fire Ecology 19, 1 (2023).511

[46] Moghaddas, J. J. & Craggs, L. A fuel treatment reduces fire severity and increases512

suppression efficiency in a mixed conifer forest. International Journal of Wildland513

Fire 16, 673 (2007).514

[47] Deryugina, T., Heutel, G., Miller, N. H., Molitor, D. & Reif, J. The Mortality515

and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction.516

American Economic Review 109, 4178–4219 (2019).517

[48] Barnett, K., Parks, S., Miller, C. & Naughton, H. Beyond Fuel Treatment Effec-518

tiveness: Characterizing Interactions between Fire and Treatments in the US.519

Forests 7, 237 (2016).520

[49] Heller, M. Forest Service facing Republican ire on tree-thinning. POLITICO Pro521

(E&E News) (2024).522

[50] McKinney, S. T., Abrahamson, I., Jain, T. & Anderson, N. A systematic review523

of empirical evidence for landscape-level fuel treatment effectiveness. Fire Ecology524

18, 21 (2022).525

[51] Miller, R. K., Field, C. B. & Mach, K. J. Barriers and enablers for prescribed526

burns for wildfire management in california. Nature Sustainability 3, 101–109527

(2020).528

18



[52] Edwards, E. & Sutherland, S. Does Environmental Review Worsen the Wildfire529

Crisis? Tech. Rep., Property Environment Research Center (PERC) (2022).530

[53] Thompson, M. et al. Application of Wildfire Risk Assessment Results to Wildfire531

Response Planning in the Southern Sierra Nevada, California, USA. Forests 7,532

64 (2016).533

[54] Stednick, J. D. Effects of fuel management practices on water quality. In: Elliot,534

William J.; Miller, Ina Sue; Audin, Lisa, eds. Cumulative watershed effects of535

fuel management in the western United States. Gen. Tech. Rep. RMRS-GTR-231.536

Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain537

Research Station. p. 149-163. 231, 149–163 (2010).538

[55] Buckley, M. et al. Mokelumne watershed avoided cost analysis: why sierra fuel539

treatments make economic sense. Report prepared for the Sierra Nevada Con-540

servancy, The Nature Conservancy, and USDA Forest Service.(Sierra Nevada541

Conservancy: Auburn, CA) Available at http://www. sierranevadaconservancy.542

ca. gov/mokelumne [Verified 22 June 2015] (2014).543
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Methods616

Our empirical approach integrates wildfire perimeters, economic damages, fuel treat-617

ments implemented by the U.S. Forest Service, and suppression activities across eleven618

western U.S. states (Fig. 1a) to examine how fuel treatments influence wildfire spread,619

severity, and damages. Below, we outline our dataset construction, quasi-experimental620

design, counterfactual simulations, and benefit-cost calculations. Data sources and621

detailed variable descriptions are detailed in Supplementary Tables S1 and S2.622

Overview623

Our research design relies on variation in the direction a fire spreads and the distance624

at which it intersects with a fuel treatment. To illustrate, consider the 2017 Burro625

Fire depicted in Fig. 2. We divide each fire’s area into spatial cells (“plots”) defined626

by their unique direction and distance from ignition, following Plantinga et al. [24].627

The landscape is partitioned into 24 radial directions and 0.5 km distance intervals628

from ignition to perimeter. A direction is “treated” if any plot along it intersects a629

fuel treatment; otherwise, it serves as a control. Within treated directions, plots before630

the first treatment are classified as “yet-to-be-treated,” while those at or beyond it631

are “treated.” We use yet-to-be-treated and control plots to estimate how fires would632

have behaved in treated plots absent fuel treatments.633

Data634

We assemble information on fire perimeters, ignition characteristics, and burn severity635

for large fires igniting on USFS land taken from the Monitoring Trends in Burn Severity636

(MTBS) database (perimeters are only available for fires greater than 1,000 acres in the637

Western U.S.). Our analysis focuses on the 2017–2023 period, for which comprehensive638

data on fire suppression activities are available.639

Daily fire progression is obtained from NASA satellite data [60], and ignition points640

are imputed as the centroid of first-day burn polygons. Plots are classified as burned641

if their centroid intersects a fire perimeter, with burn severity measured on a 1 (“Very642

Low”) to 4 (“High”) scale. A plot is classified as “treated” if at least 50% of its area643

intersects a fuel treatment; results are robust to alternative thresholds (Supplementary644

Table S10).645

Data on fuel treatment locations, timing, and costs are obtained from the USFS646

Hazardous Fuel Treatment Reduction database (FACTS). We focus on completed647

treatment projects between 2007 and 2023, allowing a fire to intersect with fuel treat-648

ments that were completed ten years before its ignition. We choose ten years as the649

cutoff for counting fuel treatments, as previous studies have shown that fuel treatment650

effectiveness is diminished after 9–14 years [61, 62]. Treatment size is defined as the651

total footprint area of all spatial activities associated with a project [63]. We exclude652

treatments with cost-per-acre values that exceed ten standard deviations above the653

mean to address concerns of measurement error and outliers in FACTS [64]. As a654

robustness check, we also estimate treatment costs using an alternative approach based655

on USFS budget justifications and find a similar benefit-cost ratio (discussed in more656

detail below). Our final sample includes 285 wildfires between 2017 and 2023 that657
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intersect with at least one fuel treatment completed prior to ignition, representing658

14,760,206 acres burned, or 45.7% of all acres burned by MTBS fires in the Western659

U.S. during this time period.660

We assign a comprehensive set of covariates to each plot, including proximity to661

fire suppression effort (location of large airtanker drops—sourced from USFS—and662

fire suppression lines—sourced from the National Interagency Fire Center), topo-663

graphic characteristics (elevation, slope, aspect, and the topographic ruggedness664

index—derived from LANDFIRE), weather conditions (wind speed, direction, short-665

and long-term drought indicators—obtained from GridMET and measured based on666

the date of burning), economic and infrastructural factors (distance to the near-667

est wildland-urban interface (WUI) Census Block, USFS roads, and U.S. highways668

[65, 66]), and indicators for whether a plot lies within the WUI, a USFS National669

Forest, or a designated wilderness area.670

To control for predictable fire spread patterns, we generate fire simulation outputs671

from the FlamMap Minimum Travel Time (MTT) fire spread model [67]. We simulate672

fire behavior using wind speed and direction at the time and location of ignition, pre-673

treatment vegetation characteristics from LANDFIRE 2001, and standardized initial674

fuel moisture conditions. Model outputs include fire arrival time and fireline intensity.675

We conducted simulations at a 150-meter resolution for computational feasibility and676

calculated each plot’s average change in arrival time and fireline intensity following677

Plantinga et al. [24]. More details are provided in the Supplementary Appendix.678

To estimate wildfire damages, we obtain structure data from the “Wildfire Risk679

to Communities” dataset, which reports housing and structure counts at a 30-meter680

resolution as of 2020 [68]. We draw estimates of CO2 and PM2.5 emissions from681

the “Wildland Fire Emissions Inventory System” (WFEIS), which provides aggre-682

gate emissions by fire, and population- and day-weighted estimates of PM2.5 smoke683

exposure from Wen et al. [59] for fires occurring between 2017 and 2020. Because684

comparable exposure estimates are unavailable for fires from 2021 to 2023, we impute685

population-day PM2.5 exposure for these fires based on their total PM2.5 emissions.686

Total emitted PM2.5 is a strong predictor of smoke exposure (R2 = 0.58; Supplemen-687

tary Fig. S.2), allowing us to extend our exposure and damage estimates for fires from688

2021 to 2023.689

Empirical Strategy690

We estimate how fuel treatments influence wildfire spread and severity to predict691

economic damages avoided by their implementation. This requires estimating how692

wildfires would have behaved in treated plots absent treatment, using untreated (yet-693

to-be-treated and control) plots as counterfactuals. Since treatments are often placed694

where fires are more likely to spread or threaten assets, this strategy must address695

systematic differences between treated and untreated areas.696

We address these challenges by exploiting quasi-random variation in fire ignition697

locations relative to pre-existing fuel treatments. While landscape features influence698

ignition risk, their precise location is unpredictable, generating exogenous variation699

in which directions receive treatment and the distance at which a fire first encounters700

a treated area. This variation allows us to compare wildfire behavior across treated701
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and untreated directions within fires, controlling for unobserved fire-direction-specific702

factors and systematic distance-related trends across fires, thereby isolating the causal703

effect of fuel treatments.704

Estimating treatment effects705

We estimate treatment effects using a conditional hazard framework adapted from706

Plantinga et al. [24]. Our analysis focuses on the active spread of fires, using only707

those plots that were reached by a fire’s spread. For burn severity, we further restrict708

the sample to burned plots only; hence, our estimates can be interpreted as the effect709

of fuel treatments on fire severity, conditional on burning.710

Let Yfld denote wildfire outcome in fire f , direction l, and distance bin d from711

its origin. Under the parallel trends assumption that, absent treatment, fire behavior712

would have evolved similarly in treated and untreated directions, we can write Yfld as713

Yfld = αfl + ηd +X ′
fldΓ + θfld ·Dfld + ϵfld, (1)

where Xfld denotes a vector of plot-specific observable characteristics, ϵfld denotes714

the unobservable idiosyncratic component of fire behavior, and Dfld denotes a binary715

variable equal to one if a plot is treated. Fire-direction fixed effects, αfl, control716

for unobserved factors that are constant within a direction, such as assets at risk,717

prevailing fire spread patterns, and persistent landscape features, while distance fixed718

effects, ηd, capture unobserved systematic changes in a fire as it spreads outward from719

the ignition point. To avoid complications that arise from multiple treatments [69], we720

drop all plots in treated directions that spread beyond a treated area.721

When modeling fire spread, we define Yfld as a binary variable equal to one if722

a plot burned. The linear probability model in Eq. 1 is then analogous to a linear723

approximation of a discrete-time conditional hazard function, where distance fixed724

effects ηd capture the baseline hazard at distance d. When modeling burn severity,725

we define Yfld as average burn severity. In both cases, θfld represents the plot-specific726

treatment effect, conditional on the fire not yet being extinguished (spread) or the727

plot burning (severity).728

We apply the imputation method of Borusyak et al. [25], estimating αfl, ηd, and729

Γ in Eq. 1 using only untreated (control and yet-to-be-treated) plots. These estimates730

are then used to predict counterfactual outcomes in the absence of treatment, Ŷ 0
fld,731

for treated plots. Plot-specific treatment effects are then calculated as the difference732

between observed and counterfactual outcomes: θ̂fld = Yfld − Ŷ 0
fld. We weight regres-733

sions by plot acreage to adjust for varying plot sizes, and estimate clustered standard734

errors at the fire level to account for spatial autocorrelation.735

We compute the average treatment effect for treated plots that are h distance736

bins from the first fuel treatment interaction. Let δfl denote where fire f and treated737

direction l first intersects a treatment, and define Kfld = d − δfl. The average effect738

at distance h is τh =
∑

fld 1[Kfld = h]θfld/Nh, where Nh denotes the number of plots739

for which Kfld = h. These dynamic treatment effects are shown in Fig. 3a,b.740

We choose the estimator proposed by Borusyak et al. [25] because it addresses741

the biases arising from differential timing (i.e., directions interact with treatments at742
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different distances) and heterogeneous treatment effects that can distort conventional743

two-way fixed effects models. Further, its imputation-based approach allows us to744

estimate plot-specific treatment effects, facilitating the analysis of treatment effect745

heterogeneity and the prediction of counterfactual fire behavior in the absence of fuel746

treatments. We also apply alternative methods commonly used in the literature [70, 71]747

and find similar results (Supplementary Table S6).748

Investigating parallel trends749

We assess the parallel trends assumption by estimating a version of Eq. 1 with750

indicators for distances before treatment interaction:751

Yfld = αfl + ηd +X ′
fldΓ +

h+1∑
h=−1

τh1[Kfld = h] + ϵfld. (2)

Pre-treatment effects, τh, represent differential trends in outcomes between treated752

and control directions prior to treatment, relative to a baseline (h = −6). Rejecting753

the null hypothesis Ho : τh = 0 ∀ h ≤ −1 would be evidence against the parallel trends754

assumption. We estimate Eq. 2 using only control and yet-to-be-treated plots, thereby755

avoiding bias from post-treatment effects contaminating estimates of pre-treatment756

effects [25, 72].757

Challenges for causal identification758

Although fire ignition locations vary quasi-randomly, violations of the parallel trends759

assumption remain possible. Fuel treatments are strategically located in areas where760

fires are more likely to spread and burn, which may cause treated and untreated761

directions to become increasingly dissimilar as fires advance toward treatments. This762

systematic placement implies that, without fuel treatments, fires in treated directions763

could exhibit more severe behavior than those in untreated directions.764

Treated directions may also exhibit differential trends in fire behavior due to sample765

selection. We restrict our sample to only those fires that intersect with a fuel treat-766

ment, excluding fires in which treated directions were extinguished before reaching a767

treatment. As a result, treated directions in our sample are mechanically more likely768

to have burned than control directions, particularly at greater distances from igni-769

tion. This selection bias could make predicted counterfactual treated plots appear less770

fire-prone than they would have been in the absence of treatment, biasing estimated771

treatment effects towards zero.772

Another challenge stems from the survival-like nature of wildfire progression. As773

fires extinguish over distance, fewer plots remain for analysis beyond the initial treat-774

ment encounter (Supplementary Fig. S.1a), resulting in different sets of observations775

contributing to the dynamic treatment effects, τh. This non-random attrition reduces776

statistical precision, complicates the interpretation of the treatment effects [69], and777

could result in upward bias if surviving plots reflect atypical, extreme fire behavior.778

Supplementary Fig. S.1b-d illustrates these concerns. Two patterns emerge when779

examining average treatment effects across larger windows of distances, h, around780

a fuel-treatment interaction. First, we observe modest positive pre-treatment trends781
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(h < 0), indicating that treated directions are more likely to burn as fires move away782

from their ignition points toward fuel treatments. Second, post-treatment estimates783

(h > 0) become increasingly positive and imprecise as distance h grows, reflecting that784

surviving plots may disproportionately capture unrepresentative severe, persistent fire785

behavior.786

To address these challenges, we restrict our analysis to plots within 2.5 km of787

the fuel-treatment interaction, thereby maintaining a relatively constant composi-788

tion of plots contributing to each estimate and focusing on a localized window of789

plots with comparable fire dynamics [69]. Within this window, we find no evidence of790

differential pre-treatment trends (Supplementary Fig. S.1b). Moreover, estimates of791

post-treatment effects within this 2.5 km range remain stable even when expanding792

the window size (Supplementary Table S11).793

It is important to note that all potential sources of bias—systematic treatment794

placement, sample selection, and non-random attrition—would attenuate our esti-795

mates toward zero by understating how severe fire behavior would have been in treated796

plots in the absence of fuel treatments. Thus, our estimated reductions in wildfire797

spread and severity should be interpreted as conservative lower bounds.798

Sensitivity analysis799

We conduct a range of placebo tests and robustness checks to assess the validity of our800

identification strategy and the sensitivity of our findings to alternative specifications801

and sample definitions (Supplementary Tables S4—S11). Here, we highlight several802

key exercises; additional analyses are reported in the Supplementary Appendix.803

To further support the credibility of the parallel trends assumption, we estimate804

Eqs. 1 and 2 using only fires that intersect with planned-but-incomplete fuel treatment805

projects. If areas selected for treatment are systematically different from those that806

are not, we would expect spurious treatment effects to exist for treatments never807

implemented. In contrast, we find no evidence of effects on fire spread using this808

placebo sample (Extended Data Fig. 2). We do observe slightly elevated burn severity,809

reinforcing that fuel treatments are strategically placed in high-severity areas, and810

thus, our primary estimates likely represent conservative effects.811

To improve comparability between treated and control plots, we conduct a match-812

ing exercise that restricts the sample to plots that are comparable in their observed813

characteristics (Extended Data Fig. 1 and Supplementary Table S5). The matched814

sample yields even larger fuel-treatment reductions in fire spread, further suggesting815

our baseline estimates are conservative. We also re-estimate Eq. 1 using only “yet-to-816

be-treated” plots from treated directions. These plots serve as a more credible control,817

exploiting only exogenous variation in treatment timing (or distance). Results from818

this restricted sample closely align with our baseline estimates, providing additional819

confidence in our findings.820

Cumulative Effects821

The treatment effects presented thus far describe how fuel treatments affect the con-822

ditional probability of a plot burning—that is, the probability that a plot burns,823
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conditional on fire having reached it. Yet a reduction in the conditional burn probabil-824

ity at one location also has downstream effects: by lowering the likelihood that a fire825

burns a given plot, it also reduces the chance that the fire reaches and burns subse-826

quent plots. To illustrate, suppose a fire has already burned Plot A, and let Yi denote827

the conditional burn probability of Plot i. The probability that Plot B burns is YB ,828

while the unconditional probability that Plot C burns is YB · YC , since the fire must829

first burn through Plot B to reach Plot C. Thus, if a fuel treatment lowers the con-830

ditional burn probability in Plot B by x percentage points, then the probability that831

Plot C burns falls by x ·YC percentage points. This compounding effect highlights how832

reductions in burn probability immediately after a fire encounters a fuel treatment833

can generate cumulative downstream benefits by interrupting the fire’s progression.834

To quantify the cumulative effects of fuel treatments, we construct counterfactual835

“survival plots,” which estimate how fires would have spread in the absence of treat-836

ment. Specifically, following the preceding example, we compute unconditional burn837

probabilities in the absence of treatment for treated plots with distance h away from838

a treatment interaction. Recall that Ŷ 0
fld represents a plot’s predicted untreated con-839

ditional burn probability and δfl denotes the distance at which fire f and direction ℓ840

first intersects with a treatment. Then the counterfactual unconditional burn proba-841

bility in the absence of treatment for a treated plot with distance h away from a fuel842

treatment, P̂ 0
flh, can be estimated as the product of conditional burn probabilities843

across distance bins:844

P̂ 0
flh =

δfl+h∏
d=δfl

Ŷ 0
fld. (3)

Similarly, we estimate a plot’s unconditional expected burn severity, which is equal to845

its predicted conditional burn severity, Ŷ 0
fld, multiplied by its unconditional probability846

of burning:847

B̂S
0

flh = P̂ 0
flh · Ŷ 0

flδfl+h. (4)

We average these estimates for a given distance h away from a fuel treatment inter-848

action across all fires f and treated directions ℓ and compute 95% confidence intervals849

using 1,000 bootstrap replications, resampling fires with replacement (Fig. 4a,b). Com-850

paring counterfactual predictions of untreated unconditional burn probabilities and851

severity to their observed counterparts quantifies the cumulative effect of fuel treat-852

ments on fire spread and severity beyond the initial treatment encounter (Extended853

Data Fig. 3). To estimate the percent reduction in total area burned, we compute854

the difference between the total predicted acres burned in the absence of treatment855

and the total observed acres burned across all treated directions, normalized by the856

observed burned area.857
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Calculating Economic Benefits858

We evaluate the cost-effectiveness of fuel treatment by estimating the expected avoided859

damages associated with conducting a fuel treatment, relative to its cost, given uncer-860

tainty about when and where future fires will ignite. We consider a counterfactual861

scenario in which the USFS did not conduct any fuel treatments between 2007 and862

2023, such that there were no fuel treatments to curb the spread of fires in our sam-863

ple. In total, 14,128 USFS fuel treatments were implemented during this period that864

could have intersected with wildfires during their effective lifetime. We use Eq. 3 to865

predict the counterfactual spread of fires in the absence of these fuel treatments. The866

estimation of expected damages under this counterfactual scenario is described below.867

Ex-ante benefit-cost ratio868

For each treatment i, let Ci be its cost, Bi its benefit if it intersects a fire, and Ii an869

indicator of intersecting with a fire in its lifetime. Assuming managers know Ci with870

certainty and that Bi and Ii are independent, the expected benefit-cost ratio across871

all treatments, T , is:872

E[BC] =

∑
i∈T λi · µi∑

i∈T Ci
,

where λi = Pr(Ii = 1) is the probability of intersecting a fire and µi the expected873

benefit, conditional on intersecting with a fire (see the Supplementary Information for874

more details).875

We divide treatments into terciles based on treatment size (acres), s ∈ S = {75−876

600, 600 − 2400, > 2400}, and estimate λs and µs for each size class. We estimate877

λs using the Kaplan-Meier survival method, assuming a treatment can only intersect878

with one fire during its lifetime (T = 10 years; Extended Data Fig. 7). We estimate879

the expected benefit µs as the avoided damages due to treatment across all treatments880

within size class s, where a treatment’s avoided damages are:881

B̂i =
∑

(f,l)∈Di

δfl+h̄∑
d=δfl

(
P̂ 0
fld − Yfld

)
·Damfld.

The term (P̂ 0
fld−Yfld)·Damfld represents the expected avoided damages a treated plot882

experienced due to being treated, which we sum up within a fire-direction up to 5 km883

beyond its first treatment interaction (h̄ = 10), allowing cumulative effects of treat-884

ments to perpetuate further than their direct effects (2.5 km). Total avoided damages885

are then calculated for the set of all fire-directions that intersect with treatment i, Di.886

The estimated average benefit of a treatment for size class s is thus µ̂s =
∑

i∈TS
B̂i/Ns,887

where Ts and Ns denote the set and number of treatments, respectively, in size class888

s that intersect a fire from 2017–2023. The overall ex-ante benefit-cost ratio across all889
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treatments is thus:890

Ê[BC] =

∑
i∈T µ̂s(i) · λ̂s(i)∑

i∈T Ci
.

We also compute an ex-ante benefit-cost ratio that accounts for the opportunity891

cost of time by discounting a fuel treatment’s expected benefits over its lifetime. We892

model the likelihood that a treatment interacts with a fire in a given year as a geometric893

process with constant annual probability λ̃s(i) = λ̂s(i)/T , where T is the lifetime894

of a treatment. Assuming that avoided damages are constant across years and that895

each treatment can interact with a fire at most once during its effective lifespan, the896

discounted expected benefit-cost ratio is given by:897

Êd[BC] =

∑
i∈T

∑T−1
t=0 µ̂s(i) · λ̃s(i) · (1− λ̃s(i))

t · (1 + r)−t∑
i∈T Ci

,

where r denotes the discount rate. The term (1− λ̃s(i))
t reflects the probability that898

treatment i has not interacted with a fire in years 0 through t− 1, and thus remains899

eligible to provide a benefit in year t. See Supplementary Table S3 for the calculated900

benefit-cost ratios using different discount rates.901

Estimating damages902

We estimate plot-level damages, Damfld, based on two primary sources: structure903

loss and emissions. For structures, we count the number of structures in each plot904

and assume that all structures on that plot are lost if it burns. For CO2 and PM2.5905

emissions, we assume that a fire’s emissions can be attributed uniformly across a fire’s906

burned area; hence, a plot’s emissions are proportionate to the number of acres in the907

plot. Multiplying fire-specific estimates of CO2 and PM2.5 emissions (from WFEIS)908

by the proportion of a fire’s burned area attributable to a plot provides an estimate909

of the CO2 and PM2.5 that would be emitted if a plot burns.910

To monetize losses from structures, we multiply the number of structures in a plot911

by the median housing value in its respective Census Block Group prior to the fire.912

To value CO2 emission reductions, we use a social cost of carbon estimate of $185 per913

ton [73]. For PM2.5-related health damages, we use fire-specific accumulated smoke914

exposure estimates derived from Wen et al. [59], which represent the sum of the U.S.915

population exposed to each µg/m3 of smoke PM2.5 for each day a fire burned. To916

estimate the statistical lives saved, we rely on Deryugina et al. [47], who find that917

a 1 µg/m3 increase in daily PM2.5 concentrations causes 0.69 additional deaths per918

million individuals aged 65 and over. We scale this estimate using the national share919

of the population over age 65 and apply a value of a statistical life of $9.2 million [11].920

Finally, we estimate PM2.5-related productivity losses using the findings of Borgschulte921

et al. [11], who show that a 1 µg/m3 increase in quarterly PM2.5 is associated with922

a $103.10 per-capita reduction in earnings. We scale this estimate using county-level923

population and the number of quarter-days affected.924
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Limitations925

Our analysis quantifies the economic benefits of fuel treatments, but several limitations926

remain. First, we do not capture all the pathways through which fuel treatments may927

reduce wildfire-related costs. For instance, treatments located near ignition points928

may prevent small fires from escalating into large, high-cost events—a mechanism929

shown to significantly reduce suppression expenditures [38]. We also do not account for930

how treatments might reduce smoke emissions through their impact on burn severity;931

instead, our estimated benefits only reflect treatment effects on emissions through their932

impact on fire spread. This likely understates smoke-related benefits, since treated933

areas that do burn tend to burn less severely.934

In addition, we do not incorporate a broader range of economic, ecological, and935

social benefits such as avoided suppression costs, improved water supply and qual-936

ity, revenues from thinning operations, local employment, and the non-use value of937

restored ecosystems [53–56]. These omissions mean that our benefit estimates should938

be interpreted as lower bounds on the full social benefits of fuel treatments.939

While our benefit estimates are likely conservative, our treatment cost estimates940

may also be understated. The USFS FACTS database has known limitations, par-941

ticularly for mechanical treatments, where cost data can be missing or subject to942

measurement error. In addition, FACTS does not account for revenues from com-943

mercial thinning operations, which often help finance non-revenue-generating fuel944

treatments [74]. To partially address these limitations, we also estimate treatment945

costs using USFS budget justifications. Specifically, we calculate the average cost per946

footprint acre using USFS budget data from 2011 to 2020 [75] and total footprint acres947

treated over the same period. We then impute treatment costs for all projects in our948

sample using this average cost per acre. This alternative approach yields a slightly949

lower benefit-cost ratio of 2.63.950

At the same time, our analysis omits certain costs associated with implementing951

treatments, such as emissions of PM2.5 and CO2 during prescribed burns. A compre-952

hensive accounting of emissions trade-offs between treated and untreated areas would953

require detailed modeling, which is beyond the scope of this study. However, prescribed954

burns are generally far less polluting than wildfires in both total emissions and public955

health impacts [57]. Moreover, because prescribed burns are planned events, commu-956

nities can take precautionary measures to limit exposure. As a result, the health and957

environmental costs of smoke from prescribed burns are likely significantly outweighed958

by the benefits of reduced wildfire emissions.959

Finally, our analysis does not account for how fuel treatments may influence the960

allocation of suppression resources within fires. We assume that suppression strate-961

gies would have remained unchanged in the absence of treatments, though this may962

not reflect real-world decision-making. This simplifying assumption overlooks poten-963

tial interactions between treatment placement and suppression response that could964

influence our counterfactual estimates of fire behavior in the absence of treatment.965

30



Acknowledgements. We thank Bryan Leonard, Eric Edwards, Joseph Price, Chris966

Free, and Sam Evans for helpful feedback and discussion. We are grateful to seminar967

participants at PERC, the NatuRE Policy and Safford Labs at UC Davis, ENRE Lab968

at Colorado State, as well as the AERE Summer Conference. The results, conclusions,969

and opinions expressed are those of the authors and do not necessarily reflect the970

views of their respective organizations.971

Supplementary information. Supplementary Information is available for this972

paper.973

Declarations974

• Funding: C.B. acknowledges funding from the U.S. Forest Service (project USDA-975

USFS-RMRS 21-CS-11221636-151). F.S. completed part of this research as a976

Graduate Fellow at the Property and Environment Research Center.977

• Conflict of interest/Competing interests: The authors declare no competing978

interests.979

• Ethics approval and consent to participate: Not applicable.980

• Consent for publication: Not applicable.981

• Data Availability: All data used in this study are publicly available, with the982

exception of the LAT ATU dataset, which was provided by the U.S. Forest Service983

upon request. Code and data necessary to replicate the results and figures in the984

main text and Supplementary Information will be made available upon publication.985

• Author Contributions: All authors contributed to the study design and writing986

of the manuscript. F.S. and C.B. constructed the analytical dataset; F.S. performed987

the data and econometric analyses and created all figures and tables.988

31



Extended Data Figures989
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Extended Data Fig. 1: Matching results. a, Covariate balance between treated
and untreated observations, before (orange) and after (blue) matching. Plots are
matched through exact and inexact matching using a genetic search algorithm (the
GenMatch function from the Matching package in R [76]). Plots are exactly matched
to occur in the same distance bin and ownership type (National Forest or Private).
Fires are inexactly matched to find the optimal covariate balance across the most
important determinants of fire spread: wind speed, energy release component (ERC),
arrival time (∆T ), log fire intensity and distance to large air tanker (LAT) fire retar-
dant drop, and topographic ruggedness index (TRI). b, Estimated average treatment
effects of fuel treatments on the conditional probability of burning using the matched
sample. Numbers above each point estimate denote the number of treated observa-
tions contributing to the corresponding estimate.
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Extended Data Fig. 2: Placebo test using incomplete treatments. Estimated
average treatment effects for (a) the conditional probability of burning and (b) con-
ditional burn severity as a function of distance from treatment interaction using a
sample of incomplete fuel treatment projects as a placebo. Pre-treatment estimates
are relative to the distance-from-treatment bin, -2.5 to -2 km. Numbers above each
estimate denote the number of treated observations contributing to the corresponding
estimate.
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Extended Data Fig. 3: Cumulative effect of fuel treatments on burn prob-
ability and severity. Difference between observed and estimated counterfactual (a)
burn probability (% points) and (b) burn severity (%) in the absence of treatment for
all treated directions. This represents the difference between “With treatment” and
“Without treatment” outcomes from Figure 4. Differences in burn severity are normal-
ized by the average burn severity without treatment to represent percentage changes.
95% confidence intervals are based on 1,000 bootstrap simulations, resampling fires
with replacement.
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a b

c d

Extended Data Fig. 4: Examples of fuel treatment effectiveness. a, A highly
effective prescribed burn from the 2017 Pinal Fire (Arizona). b, An effective prescribed
burn, which received substantial fire suppression effort in the 2019 Cellar Fire (Ari-
zona). c, Fuel treatments intersecting with the 2018 Cougar Creek Fire (Washington)
that had mixed effectiveness. d, Ineffective prescribed burn treatments from the 416
Fire (Colorado).
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Extended Data Fig. 5: Heterogeneous treatment effects on conditional
burn severity. Estimated average treatment effects of fuel treatments on conditional
burn severity by (a) proximity to suppression resources, (b) treatment size, (c) treat-
ment type, and (d) time since treatment within 2.5 km of the initial treatment-fire
interaction. Treatment effects are estimated on subsamples defined by each source of
heterogeneity, retaining only treated observations within each category while using
the full set of never-treated observations as controls. Treatment effects in (a) are esti-
mated using a subsample of 178 fires for which we have full fire suppression effort data.
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Extended Data Fig. 6: Cumulative effect of fuel treatment size on fire
spread and burn severity. Estimated average cumulative effects of fuel treatments
on (a-c) the probability of burning and (d-f) burn severity within 2.5 km beyond
the initial treatment-fire interaction for all treated directions based on fuel treatment
sizes. Cumulative effects are estimated on subsamples retaining treated observations
in a given treatment size category and all control observations. Treatment categories
are divided into small (75-600 acres), medium (600-2400 acres), and large (> 2400
acres) size classes. “With treatment” outcomes (blue) represent averages of observed
burn probability and severity. “Without treatment” outcomes (orange) represent aver-
age predicted burn probability and severity in the absence of a fuel treatment. 95%
confidence intervals are based on 1,000 bootstrap simulations, resampling fires with
replacement.
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Extended Data Fig. 7: Probability of a treatment not interacting with a
fire. Estimated probability that a fuel treatment does not interact with a wildfire
within ten years of its completion, as a function of treatment size. Estimates are
generated using a Kaplan-Meier survival estimator from the “survival” package in R
[77] and a sample of U.S. Forest Service treatments in the Western U.S. from 2006 to
2023, which may or may not interact with wildfires from MTBS.
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Supplementary Information990

Data991

Large Airtanker Drop Locations Data992

We are provided with information from the U.S. Forest Service on the time and location993

of large airtanker (LAT) retardant drops. These data come from additional telemetry994

units (ATUs) that are mounted on LATs and automatically record the exact geo-995

graphic coordinates and timestamps when the aircraft’s retardant delivery doors are996

opened and closed. The granular nature of these data allows us to reconstruct each997

drop down to the meter with sub-minute temporal accuracy. The ATU dataset offers998

an unusually detailed account of aerial suppression operations, making it a powerful999

tool to analyze how and where LATs are deployed in relation to wildfires and fuel1000

treatment projects.1001

Our analytic sample includes over 13,784 individual LAT retardant drops recorded1002

across 238 unique wildfires, all located in the Western United States. These events1003

span multiple fire seasons and include drops from both LATs, which typically carry1004

between 2,000 and 4,000 gallons of fire retardant, and Very Large Airtankers (VLATs),1005

capable of delivering over 8,000 gallons per drop. The spatial extent of individual drops1006

varies substantially depending on aircraft type, terrain, and operational objectives,1007

with drop lines ranging from a few hundred to several thousand meters in length. All1008

drop features are spatially aligned with fire perimeters using GIS tools. This alignment1009

enables us to compute spatial measures including the distance from a plot to the1010

nearest drop, the proportion of the plot intersected by drop lines, and an indicator for1011

whether a drop occurred within the plot (see Table S2).1012

Importantly, the LAT ATU dataset is comprehensive: all recorded large airtanker1013

drops during the study period are included. Fires in our sample that do not contain1014

drops represent incidents where LAT retardant was not deployed. However, the dataset1015

does not include information on other forms of aerial suppression, such as water drops1016

from helicopters or scooper aircraft. As a result, our analysis captures only the use of1017

LAT-delivered retardant and does not reflect the full spectrum of aerial suppression1018

tactics.1019

NIFC Containment Line Data1020

We obtain spatial data for on-the-ground wildfire suppression efforts from the National1021

Interagency Fire Center (NIFC). This dataset includes georeferenced line features rep-1022

resenting the locations of containment lines deployed during active wildfire incidents.1023

The lines were digitized by fire personnel and incident teams and are intended to1024

reflect the suppression infrastructure used to manage fire growth and protect assets1025

on the landscape. Our analytic sample includes line data from 178 wildfires, allowing1026

us to spatially characterize the use and configuration of ground-based containment1027

strategies.1028

The dataset captures several distinct types of containment lines, including (i) hand-1029

dug lines from firefighters, (ii) machine-dug lines from machinery such as dozers or1030

plows, (iii) roads used for containment, (iv) burnout operations, or (v) fuel breaks1031

from an undetermined source. These different types of containment reflect differences1032
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in construction methods, tactical objectives, and deployment context. All line features1033

are spatially projected and aligned with fire progression and drop data using GIS1034

processing tools. This alignment enables us to compute key spatial measures, including1035

a plot’s distance to the nearest containment line, the proportion of the plot intersected1036

by containment features, and an indicator for whether a containment line crosses the1037

plot (see Table S2).1038

Implementing Minimum Travel Time Simulations1039

We utilize outputs from the Minimum Travel Time (MTT) algorithm, implemented1040

via the FlamMap software suite, to control for predictable patterns of fire behavior1041

for the 285 wildfires in our sample [67]. MTT is a deterministic fire spread model that1042

calculates the fastest routes of fire growth across a landscape by solving for the mini-1043

mum travel time between an ignition point and every other location, based on spatial1044

variation in fuels, topography, and weather conditions. It provides a computationally1045

efficient way to simulate potential fire spread pathways under a fixed set of input con-1046

ditions. MTT serves as a tool to control for variation in potential fire behavior in the1047

absence of fuel treatment, allowing us to isolate the effect of treatment on wildfire1048

outcomes.1049

It is important to emphasize that we do not use MTT to predict final fire perime-1050

ters. The model is not well-suited for such applications: in simulation settings where1051

the user specifies a fixed duration, the final perimeter is often highly sensitive to this1052

duration choice. Rather, we leverage MTT’s ability to simulate fire behavior across the1053

full spatial extent of a fire-prone landscape. Compared to alternative models such as1054

FARSITE, MTT allows for simulations to proceed until fire behavior is predicted for1055

every cell in the defined landscape extent—regardless of time. This feature is critical1056

for our setting, where we analyze spatially disaggregated fire behavior within sectors of1057

a circular grid. A limitation of MTT is that it does not support time-varying weather;1058

instead, the user must specify a constant wind speed and direction throughout the1059

simulation.1060

To simulate fire behavior on the landscapes surrounding the 285 wildfire ignitions in1061

our sample, we use TestMTT, a command-line implementation of the MTT model that1062

leverages the FlamMap software suite.1 The command-line interface allows efficient1063

execution of a large number of fire simulations in a batch-processing environment.1064

Inputs to TestMTT include an ignition shapefile, a landscape file, specifications of fuel1065

and weather conditions, and additional optional simulation parameters.1066

For each fire, we define ignition locations as the centroid of the Day 1 fire perimeter1067

polygon, buffered by 60 meters to reflect initial fire area and ensure compatibility with1068

raster inputs. Simulation landscape are K × K kilometer areas centered at the fires1069

origin, where K corresponds to the maximum observed spread distance of the fire from1070

its ignition point, plus a 3-kilometer buffer in all directions.1071

We crop 30-meter resolution raster layers to these landscapes, representing topo-1072

graphic (elevation, slope, aspect) and vegetation conditions, drawing on LANDFIRE1073

1TestMTT is available for download from https://www.alturassolutions.com/FB/FB API.htm, FlamMap
from https://research.fs.usda.gov/firelab/products/dataandtools/flammap.
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datasets. Vegetation layers include Scott and Burgan standard fire behavior fuel mod-1074

els, canopy cover, canopy height, canopy base height, and canopy bulk density (see1075

Table S2 for detailed descriptions). To estimate counterfactual fire behavior in the1076

absence of treatment, we fix vegetation conditions to reflect those from the year1077

2001—i.e. LANDFIRE 2001.1078

Wind speed and direction are extracted from the gridMET dataset for the date and1079

location of each fire’s ignition. These values are assumed to be constant throughout the1080

simulation. TestMTT requires inputs for fuel moisture content for five fuel types: 1-1081

hour, 10-hour, and 100-hour dead fuels, and live herbaceous and woody fuels. Because1082

retrospective, spatially resolved estimates of fuel moisture are unavailable for all fuel1083

classes, we follow prior literature (e.g., Plantinga et al. [24]) and use FlamMap’s default1084

“moderate” values: 6%, 7%, and 8% for 1, 10, and 100-hour dead fuels, respectively;1085

60% for live herbaceous fuels; and 90% for live woody fuels.2 Since our analysis focuses1086

on relative fire behavior across space and treatment status—rather than absolute1087

predictions of spread rates—our results are not likely to be highly sensitive to this1088

choice of fuel moisture parameters.1089

Simulations are conducted at a 150-meter spatial resolution. We use default1090

FlamMap parameters for all other fire behavior submodels, including those governing1091

crown fire activity, wind adjustment factors, and fire spotting.1092

From each simulation, we extract two key outputs: fire arrival time and fireline1093

intensity. Arrival time measures the number of hours after ignition that the fire is1094

predicted to reach each plot’s centroid, while fireline intensity captures the predicted1095

heat output per unit time. We calculate each plot’s average arrival time (Tld), and1096

compute ∆Tld = Tld − Tl,d−1 as a measure of the rate of predicted fire spread. We1097

also create an indicator of whether ∆Tld is missing which may be because either the1098

focal cell or previous cell is missing fuels in the majority of its area or because time1099

of arrival is predicted to be lower in the focal cell than the previous cell. Lastly, we1100

calculate the average of the natural log of fireline intensity in a plot.1101

Ex-Ante Benefit-Cost Ratio Derivation1102

To evaluate the cost-effectiveness of fuel treatments, we ask a central policy question:1103

What are the expected benefits of conducting a fuel treatment—measured as reduced1104

wildfire damages—relative to its cost, given uncertainty about where future fires will1105

ignite and spread to?1106

Crucially, land managers must decide where to implement treatments without1107

knowing if or when a wildfire will occur in that location. Simply comparing the benefits1108

of treatments that happened to intersect with fires to their costs ignores this uncer-1109

tainty and overstates expected returns. Instead, we estimate an ex-ante benefit-cost1110

ratio: a forward-looking measure that accounts for the probability that a treatment1111

intersects with a fire during its effective lifetime.1112

To formalize this idea, let Ci denote the cost of implementing treatment i and Bi1113

the benefit it provides if it intersects with a fire. Let Ii denote a dummy variable that is1114

equal to one if fuel treatment i intersects with a fire in its lifetime and zero otherwise.1115

2These defaults are frequently used in retrospective simulation settings where detailed fuel moisture data
are unavailable.
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Assuming a treatment can intersect with at most one fire, the realized benefit-cost1116

ratio is:1117

BCi = Ii ×
Bi

Ci
.

Since managers don’t know Bi and Ii at the time of implementation we instead1118

calculate the expected benefit-cost ratio. Assuming Bi and Ii are independent, this1119

expectation becomes:1120

E[BCi] = Pr[Ii = 1]× E[Bi]

Ci
=

λi · µi

Ci
,

Here λi = Pr[Ii = 1] is the probability that treatment i intersects with a fire1121

µi = E[Bi] is its expected benefit conditional on intersection.1122

We then estimate the average ex-ante benefit-cost ratio across all treatments that1123

could have been conducted during our sample time period, T , as:1124

E[BC] =

∑
i∈T λiµi∑
i∈T Ci

.

This serves as our basis for estimating the expected avoided damages described in1125

Section 2.1126

Robustness Checks1127

We conduct a series of robustness checks to evaluate the sensitivity of our results1128

to alternative control groups, specifications, sample, and sample constructions. To1129

address concerns that treated and control directions may differ systematically—even1130

after conditioning on observable determinants of fire behavior—we: (i) implement a1131

matching procedure to improve comparability between treated and control plots; (ii)1132

estimate treatment effects using only treated directions; and (iii) exclude all control1133

directions adjacent to treated directions (Table S5). We remove adjacent control direc-1134

tions to mitigate concerns about potential violations of the Stable Unit Treatement1135

Value Assumption (SUTVA), whereby fuel treatments may induce fire flanking into1136

nearby plots, potentially increasing burn probability and severity in those adjacent1137

controls [40].1138

Estimates from (i) and (ii) yield larger and statistically significant treatment1139

effects, suggesting that our baseline DiD specification likely underestimates the true1140

effect of fuel treatments on fire spread (Table S5). While the matched estimates pro-1141

vide stronger internal validity, we favor the baseline DiD specification because its1142

sample more closely reflects the broader landscape in which treatments occur—making1143

it more suitable for the counterfactual cost-benefit analysis. We also prefer the base-1144

line over the treated-only specification because including control directions improves1145
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the model’s ability to make out-of-sample predictions required for our counterfactual1146

exercise. Finally, results from (iii) are nearly identical to the baseline, suggesting that1147

any potential SUTVA violations from adjacency are minimal in our context.1148

We also explore the sensitivity of our results to the number of directions used to1149

construct our sample. Since we use a linear probability model to model the hazard1150

rate, our baseline results do not require independence across directions to achieve1151

unbiasedness or consistency [78]. In Table S6, we show how the results change as1152

the number of directions included in the sample varies. As expected, we find that as1153

the number of directions decreases, both the magnitude and statistical significance1154

of the estimates attenuate due to reduced precision and aggregation bias. However,1155

the results remain broadly similar across the columns, indicating that our choice of1156

directions does not substantially influence the overall findings.1157

We further explore whether our results are driven by variation in fire suppression1158

effort, particularly the possibility that suppression is strategically deployed near fuel1159

treatments, driving the results. In Table S7, we show how estimated treatment effects1160

change with the inclusion of suppression controls. These include indicators for the1161

presence and proximity of LAT drops across the full sample and fireline controls for1162

the subset of 178 fires with detailed fireline data. We find that including suppression1163

effort controls does not substantially alter the estimated treatment effects. Column 61164

further restricts control plots to those located within 0.2 km of either a LAT drop or1165

a fireline. The results from this restricted sample are slightly more negative and more1166

statistically significant, supporting the interpretation that fuel treatments enhance the1167

effectiveness of suppression.1168

We also test the sensitivity of our results to the definition and construction of the1169

sample. In our baseline sample, we define fire origins as the centroid of the perimeter1170

on the first day the fire burned. In Column 2 of Table S11, we use ignition loca-1171

tions as reported by MTBS instead and find similar treatment effect estimates. We1172

then examine three sample restrictions: (i) limiting to fires ignited by lightning; (ii)1173

removing plots located outside of USFS-managed Wilderness within National Forests1174

(i.e., excluding private, Wilderness, or other federal lands); and (iii) excluding plots1175

where fire behavior is potentially non-contiguous—for example, when a plot’s adjacent1176

neighbor closer to the fire origin did not burn, but a more distant plot in the same1177

direction did. The results from the lightning-only subsample, which relies on more1178

quasi-random ignition locations, are consistent with our baseline estimates, lending1179

additional support to our identification strategy. Similarly, restricting the sample to1180

USFS-managed lands shows that our findings are not driven by differences in owner-1181

ship or land management context. Lastly, removing plots with potentially unusual fire1182

behavior (iii) helps account for fire direction changes and flanking dynamics; results1183

from this subsample remain consistent with the main estimates.1184

We also evaluate the robustness of our findings to alternative difference-in-1185

differences estimators. Table S9 presents results from (i) the Sun and Abraham1186

estimator [70], (ii) the Callaway and Sant’Anna estimator [79], and (iii) a standard1187

two-way fixed effects (TWFE) estimator. Across all approaches, we find treatment1188

effects that are similar in magnitude and significance to our baseline specification. In1189
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some cases, these alternative estimators yield even stronger effects, suggesting that1190

our findings are not sensitive to the specific choice of DiD estimation strategy.1191

Finally, we examine the sensitivity of our results to alternative definitions of treat-1192

ment exposure. In our baseline specification, a plot is defined as treated if at least 50%1193

of its area overlaps with a fuel treatment. This threshold is intended to avoid misclas-1194

sifying plots as treated when only a small portion of the area contains treatment. In1195

Table S10, we report results using alternative thresholds: any overlap (>0%), 25%,1196

50%, 75%, and 100%. Across all definitions, we continue to find statistically signifi-1197

cant treatment effects. As expected, the magnitude of the estimates attenuates when1198

the threshold is either more permissive or more restrictive, likely due to increased1199

measurement error or a reduced sample size.1200
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Fig. S.1: Event Study Plots by Event Window: Panel a) displays the distri-
bution of the number of treated observations across different distances to the nearest
distance bin containing the first treatment in its direction. Panels b-d) show the event
study coefficient estimates on the probability of fire spread for 2.5, 4, 7.5 kilometer
event windows. Numbers above each coefficient estimate display the number of treated
observations used to estimate the corresponding coefficient. Event study plots are cal-
culated via the Borusyak et al. [25] method for accounting for unit and time specific
heterogeneous treatment effects.
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Fig. S.2: Relationship Between Fire PM2.5 Emissions and Population-Day
PM2.5 Exposure: Relationship between the natural log of total PM2.5 emissions and
the natural log of total population-day PM2.5 exposure for wildfires occurring from
2017 to 2020. Emissions estimates are from WFEIS, and exposure estimates are from
Wen et al. (2023) [59].
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Supplementary Tables1202

Table S1: Main Variables & Data Sources

Category Variables Sources

Fires
Wildfire perimeters, burn severity

Day of burn

MTBS

Parks (2014) [60]

Fuel Treatments
Treatment polygons, cost,
& treatment type

FACTS USFS [80]

Institutional
Variables

Distance to WUI & US Highway

USFS road, National Forest &
Wilderness Areas

Radeloff et al. [65],
U.S. Census Bureau [81]

USFS [66, 82, 83]

Assets at Risk
Structures, Homes, & Median Housing
Values

Jaffe et al. (2024) [68] &
ACS

Suppression Effort
Large air tanker (LAT) drop

Firelines

USFS

NIFC

Topography
Slope, Aspect, Elevation,
Topographic ruggedness index

LANDFIRE

Weather
Wind speed & direction
1000 hour fuel moisture, ERC

gridMET

Vegetation
Characteristics

Fuel type group &
canopy characteristics LANDFIRE

Fire Simulation
Outputs

Arrival time, fireline
intensity

MTT Simulations
in FlamMap

Historic Fire Risk

Mean Fire Return Interval (MFRI)

Previous wildfire area
burned

LANDFIRE

MTBS

Smoke
Fire CO2 & PM2.5 Emissions

Population-day weighted PM2.5 exposure

WFEIS

Wen et al. [59]

Note: USFS = United States Forest Service, FACTS = Forest Activity Tracking System, WUI = Wildland Urban
Interface, ACS = American Community Survey MTT = Minimum Travel Time, NIFC = National Interagency Fire
Center, WFEIS = Wildland Fire Emissions Inventory System
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Table S2: Control Variable Names, Descriptions, & Sources

Name Definition Source

Topographic Variables

Slope The average slope percent of a plot LANDFIRE

Elevation The average elevation (ft) of a plot LANDFIRE

Aspect Class 8 aspect classes based on cardinal directions
(see https://pro.arcgis.com/en/pro-app/
latest/tool-reference/spatial-analyst/
how-aspect-works.htm)

LANDFIRE

TRI Terrain Ruggedness Index (TRI), constructed
using elevation data from LANDFIRE and
‘terrain()‘ from R package terra

LANDFIRE

Historic Fire Risk & Vegetation Characteristics

Previously Burned Equals 1 if a plot’s centroid burned in the pre-
vious ten years

MTBS

MFRI Avg Mean Fire Return Interval (MFRI) of a
plot, MFRI is the average period between fires
under historic regimes

LANDFIRE

Fuel Group Type Fuel type a plot’s centroid as per the 13 Ander-
son models

LANDFIRE

Canopy Bulk Density Available canopy fuel density (kg/m3 × 100),
used in MTT simulations

LANDFIRE

Canopy Height Vegetation canopy top height (m × 10), used
in MTT simulations

LANDFIRE

Canopy Base Height Canopy bottom height from ground (m × 10),
used in MTT simulations

LANDFIRE

Canopy Cover Tree canopy percent cover in a stand, used in
MTT simulations

LANDFIRE

Weather Variables

Wind Speed Avg wind speed (m/s) on day of burn at plot
centroid

gridMET

Wind Direction Avg wind direction (degrees) on day of burn
at plot centroid

gridMET

Wind Difference Cosine of directional difference between grid
bearing and avg wind direction on day the pre-
vious cell burned

gridMET

ERC Avg energy release component on day of burn
at plot centroid

gridMET

FM 1000 Avg 1000-hour fuel moisture (%) on day of
burn at plot centroid

gridMET
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Name Definition Source

Fire Suppression Effort & Determinants of Suppression Effort

LAT & Distance LAT Indicator for LAT drop and distance to nearest
LAT drop

USFS

Sup Line & Distance to
Sup Line

Indicator if a plot contains a suppression line
and distance to nearest suppression line

NIFC

Sup Line Intensity The total length of suppresison lines divided
by total acres in a plot

NIFC

LAT Line Intensity The total length of LAT lines divided by total
acres in a plot

NIFC

Distance WUI Distance to nearest U.S. Census WUI block [65]

Distance USFS Road Distance to nearest USFS road [66]

Distance US Highway Distance to nearest U.S. Highway [81]

Fire Simulation Outputs

∆T Difference in simulated time of arrival between
current and previous cells (hours)

MTT Outputs

∆T Missing Equals 1 if ∆T is missing. ∆T can be missing
either because the target cell or previous cell
is missing fuels in the majority of its area or
because time of arrival is predicted to be lower
in the target cell than the previous cell.

MTT Outputs

Fireline Intensity Log of simulated fire intensity (kW/hour) MTT Outputs

Ownership

National Forest Dummy for plot centroid inside National For-
est

[83]

Wilderness Area Dummy for plot centroid inside a Wilderness
Area

[82]

WUI Dummy for plot centroid inside WUI [65]

Note: USFS = United States Forest Service, FACTS = Forest Activity Tracking System, WUI = Wildland
Urban Interface, MTT = Minimum Travel Time, NIFC = National Interagency Fire Center
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Table S3: Estimated Benefit-Cost Ratios by Discount Rate

Discount Rate Small Medium Large Total

0 2.7 3.26 5.03 3.48
0.03 2.29 2.6 3.49 2.7
0.05 2.1 2.4 3.24 2.49
0.08 1.87 2.14 2.92 2.23

Note: Estimated benefit–cost ratios for small (75–600 acres), medium (600–2400 acres), and large
(>2400 acres) treatments, as well as the overall benefit–cost ratio, reported by discount rate.

Table S4: Spatial DiD - Baseline Regressions

Probability of Fire Spread Conditional Burn Severity
(1) (2)

Treat0 -0.135∗∗∗ -0.177∗∗∗

(0.021) (0.032)
Treat1 -0.084∗∗∗ -0.202∗∗∗

(0.022) (0.043)
Treat2 -0.096∗∗∗ -0.251∗∗∗

(0.030) (0.055)
Treat3 -0.030 -0.186∗∗∗

(0.031) (0.065)
Treat4 0.018 -0.174∗

(0.035) (0.090)

Observations 69,174 61,616
R2 0.45 0.88

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from two separate Spatial Difference-in-Differences (DiD) regressions.
The first column estimates the impact of fuel treatments on the probability of fire spread, condi-
tional on a plot not yet being extinguished, while the second column estimates its impact on burn
severity conditional on a plot burning. The coefficient, Treatk, captures the estimated effect of
a fuel treatment located k distance bins (0.5 km each) from where the fire first encounters the
treatment in a given direction. Each sample comprises of plots from wildfires that intersect with
USFS fuel treatments between 2017 and 2023. Treated plots that are more than 2.5 km away
from where a fire first interacts with a treatment in a given direction are excluded. In Column
1, the sample is restricted to plots that are not yet extinguished—specifically, where the plot
one distance bin closer to the fire origin in its given direction has burned. In Column 2, the
sample is restricted to plots that burn. Each regression includes fire-direction and distance-bin
fixed effects, along with controls for environmental conditions, economic factors, and suppression
efforts. Economic controls include distance to a WUI Census Block, USFS road, and US High-
way, as well as indicators for whether the plot is within the WUI, a USFS National Forest, or
a Wilderness Area. Environmental controls account for historic fire risk (whether a plot burned
in the previous ten years and its historic mean fire return interval), topographic characteristics
(slope, elevation, aspect class, and topographic ruggedness), weather conditions on the day of
burning (energy release component, 1000-hour fuel moisture, wind speed, and wind difference),
and fire simulation outputs (∆T , ∆T missing, and the natural log of fire intensity). Suppression
effort controls include an indicator for whether a plot received a large-air tanker (LAT) drop and
its distance to the nearest LAT drop. Spatial DiD coefficient estimates are obtained using the
imputation approach from [25], implemented via the “didimputation” package in R [84]. Stan-
dard errors are clustered at the fire level.

50



Table S5: Spatial DiD Robustness Check - Different Control Groups

Probability of Fire Spread
(1) (2) (3) (4)

Treat0 -0.135∗∗∗ -0.154∗∗∗ -0.139∗∗∗ -0.135∗∗∗

(0.021) (0.021) (0.022) (0.022)
Treat1 -0.084∗∗∗ -0.122∗∗∗ -0.078∗∗∗ -0.081∗∗∗

(0.022) (0.021) (0.021) (0.022)
Treat2 -0.096∗∗∗ -0.137∗∗∗ -0.111∗∗∗ -0.094∗∗∗

(0.030) (0.027) (0.027) (0.030)
Treat3 -0.030 -0.058∗ 0.023 -0.028

(0.031) (0.031) (0.023) (0.031)
Treat4 0.018 -0.023 -0.008 0.021

(0.035) (0.027) (0.029) (0.036)
Baseline Yes No No No
Matched Sample No Yes No No
Treated Directions Only No No Yes No
No Adjacent Directions No No No Yes

Direction-Fire FEs Yes Yes Yes Yes
Distance FEs Yes Yes Yes Yes

Observations 69,174 4,306 3,116 63,128
R2 0.45 0.91 0.87 0.46

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from four separate Spatial Difference-in-Differences (DiD) regres-
sions estimating the impact of fuel treatments on the probability of fire spread, conditional
on a plot not yet being extinguished. Each regression is estimated on a different sample,
varying by the choice of control groups. The coefficient, Treatk, captures the estimated
effect of a fuel treatment located k distance bins (0.5 km each) from where the fire first
encounters the treatment in a given direction. All samples include wildfires that intersect
with USFS fuel treatments between 2017 and 2023, and observations treated more than
2.5 km away are excluded. Column 1 reports estimates using the baseline sample, where
plots that are either never treated directions or “yet-to-be treated” plots serve as coun-
terfactuals. Column 2 presents results on a matched subsample, constructed to improve
comparability between treated and control plots (see Extended Data Fig. 1 for details).
Column 3 removes all never-treated directions, using only “yet-to-be treated” plots as the
counterfactual and Column 4 uses a sample that excludes also control directions adjacent
to treated directions. Each regression includes fire-direction and distance-bin fixed effects,
along with controls for environmental conditions, economic factors, and suppression efforts
as detailed in Table S4. Standard errors are clustered at the fire level. Spatial DiD esti-
mates are estimated using the imputation approach from [25] using the “didimputation”
[84] package in R.
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Table S6: Spatial DiD Robustness Check - Changing No. Directions

Probability of Fire Spread
(1) (2) (3) (4)

Treat0 -0.131∗∗∗ -0.135∗∗∗ -0.120∗∗∗ -0.042∗∗

(0.021) (0.021) (0.022) (0.018)
Treat1 -0.096∗∗∗ -0.084∗∗∗ -0.039∗ -0.037∗

(0.019) (0.022) (0.022) (0.021)
Treat2 -0.028 -0.096∗∗∗ -0.030 -0.051∗

(0.026) (0.030) (0.027) (0.027)
Treat3 -0.012 -0.030 -0.006 -0.022

(0.031) (0.031) (0.031) (0.037)
Treat4 -0.024 0.018 -0.052 0.005

(0.031) (0.035) (0.038) (0.044)

No. Directions 36 24 18 12

Observations 102,301 69,174 51,709 34,571
R2 0.40 0.45 0.49 0.57

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from four separate Spatial Difference-in-Differences
(DiD) regressions estimating the impact of fuel treatments on the probability of
fire spread, conditional on a plot not yet being extinguished. Each regression is
estimated on a different sample, varying by the choice of the number of directions
in the construction of our sample (36, 24, 18, 12). The coefficient, Treatk, cap-
tures the estimated effect of a fuel treatment located k distance bins (0.5 km each)
from where the fire first encounters the treatment in a given direction. All sam-
ples include wildfires that intersect with USFS fuel treatments between 2017 and
2023, and observations treated more than 2.5 km away are excluded. Each regres-
sion includes fire-direction and distance-bin fixed effects, along with controls for
environmental conditions, economic factors, and suppression efforts as described
in Table S4. Spatial DiD estimates are estimated using the imputation approach
from [25] using the “didimputation” [84] package in R. Standard errors are clus-
tered at the fire level.
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Table S7: Spatial DiD Robustness Check - Impact of Suppression Controls

Probability of Fire Spread
(1) (2) (3) (4) (5) (6)

Treat0 -0.135∗∗∗ -0.138∗∗∗ -0.115∗∗∗ -0.112∗∗∗ -0.108∗∗∗ -0.161∗∗∗

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
Treat1 -0.084∗∗∗ -0.085∗∗∗ -0.067∗∗∗ -0.067∗∗∗ -0.062∗∗∗ -0.124∗∗∗

(0.022) (0.022) (0.022) (0.022) (0.021) (0.034)
Treat2 -0.096∗∗∗ -0.097∗∗∗ -0.086∗∗∗ -0.087∗∗∗ -0.081∗∗∗ -0.222∗∗∗

(0.030) (0.030) (0.030) (0.029) (0.028) (0.041)
Treat3 -0.030 -0.029 -0.050 -0.051 -0.045 -0.118

(0.031) (0.031) (0.033) (0.033) (0.032) (0.080)
Treat4 0.018 0.020 0.035∗ 0.033∗ 0.037∗∗ 0.019

(0.035) (0.035) (0.018) (0.018) (0.018) (0.022)

Baseline Yes No No No No No
LAT Controls Yes No No Yes Yes Yes
Suppression Line Controls No No No No Yes Yes
Full Sample Yes Yes No No No No
Suppression Line Sample No No Yes Yes Yes Yes
Effort Only Controls No No No No No Yes

Observations 69,174 69,174 45,824 45,824 45,824 18,217
No. Fires 285 285 178 178 178 178
R2 0.45 0.45 0.46 0.46 0.46 0.46

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from four separate Spatial Difference-in-Differences (DiD) regressions estimating the
impact of fuel treatments on the probability of fire spread, conditional on a plot not yet being extinguished.
Each regression is estimated on a different sample or set of fire suppression controls to assess the sensitivity of
our results to their inclusion. The coefficient, Treatk, captures the estimated effect of a fuel treatment located
k distance bins (0.5 km each) from where the fire first encounters the treatment in a given direction. Column 1
reports estimates based on our baseline sample, including large-air tanker (LAT) drop controls, while column 2
reports estimates from this sample without these controls. Columns 3-6 use a sample of fires for which we have
data on fire lines. Column 3 includes no suppression effort controls, column 4 includes LAT drop controls, and
column 5 includes both LAT drop and fire suppression line controls. Column 6 includes only controls which
are “close” to fire suppression efforts. We define a plot as “close” to suppression resources if it is within 0.2
kilometers of a large airtanker (LAT) drop or a fireline, while plots are “far” from suppression resources if they
are further than 0.2 kilometers of both. Each regression includes fire-direction and distance-bin fixed effects,
along with controls for environmental conditions and economic factors, as detailed in Table S4. Spatial DiD
estimates are estimated using the imputation approach from [25] using the “didimputation” [84] package in R.
Standard errors are clustered at the fire level.
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Table S8: Spatial DiD Robustness Check - Alternative Samples

Probability of Fire Spread
(1) (2) (3) (4) (5)

Treat0 -0.135∗∗∗ -0.112∗∗∗ -0.143∗∗∗ -0.130∗∗∗ -0.077∗∗∗

(0.021) (0.027) (0.023) (0.021) (0.030)
Treat1 -0.084∗∗∗ -0.092∗∗∗ -0.057∗∗ -0.093∗∗∗ -0.132∗∗∗

(0.022) (0.022) (0.023) (0.022) (0.038)
Treat2 -0.096∗∗∗ -0.054∗ -0.108∗∗∗ -0.090∗∗∗ -0.178∗∗∗

(0.030) (0.032) (0.033) (0.030) (0.058)
Treat3 -0.030 0.007 -0.026 0.011 -0.029

(0.031) (0.035) (0.034) (0.032) (0.036)
Treat4 0.018 -0.005 0.022 0.043 0.075

(0.035) (0.046) (0.041) (0.034) (0.082)

Baseline Yes No No No No
Reported Ignitions No Yes No No No
USFS - Non-Wilderness No No Yes No No
No Already Extinguished No No No Yes No
Lightning Only No No No No Yes

Direction-Fire FEs Yes Yes Yes Yes Yes
Distance FEs Yes Yes Yes Yes Yes

Observations 69,174 78,848 48,560 61,652 20,605
R2 0.45 0.41 0.53 0.47 0.46

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from five separate Spatial Difference-in-Differences (DiD) regressions
estimating the impact of fuel treatments on the probability of fire spread, conditional on a plot
not yet being extinguished. Each regression is estimated on a different sample. The coefficient,
Treatk, captures the estimated effect of a fuel treatment located k distance bins (0.5 km each) from
where the fire first encounters the treatment in a given direction. All samples include wildfires that
intersect with USFS fuel treatments between 2017 and 2023, and observations treated more than
2.5 km away are excluded. Column 1 reports estimates based on our baseline sample, while column
2 uses a sample constructed from reported ignition locations from MTBS. Column 3 excludes
plots located within wilderness areas or outside USFS National forests. Column 4 excludes plots in
directions where the fire had already been extinguished—that is, once the fire fails to spread into
the next adjacent plot further from the origin, all subsequent plots in that direction are removed
from the sample. Column 5 includes only fires starting by lightning. Each regression includes fire-
direction and distance-bin fixed effects, along with controls for environmental conditions, economic
factors, and suppression efforts, as detailed in Table S4. Spatial DiD estimates are estimated using
the imputation approach from [25] using the “didimputation” [84] package in R. Standard errors
are clustered at the fire level.
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Table S9: Spatial DiD Robustness Check - Alternative DiD Estimators

Probability of Fire Spread
(1) (2) (3) (4)

Treat0 -0.135∗∗∗ -0.129∗∗∗ -0.120∗∗∗ -0.121∗∗∗

(0.021) (0.024) (0.045) (0.036)
Treat1 -0.084∗∗∗ -0.045∗ -0.103∗∗∗ -0.134∗∗∗

(0.022) (0.027) (0.038) (0.033)
Treat2 -0.096∗∗∗ -0.099∗∗∗ -0.135∗∗∗ -0.180∗∗∗

(0.030) (0.035) (0.041) (0.042)
Treat3 -0.030 -0.099∗∗∗ -0.075∗ -0.150∗∗∗

(0.031) (0.036) (0.040) (0.048)
Treat4 0.018 -0.018 -0.053 -0.143∗∗∗

(0.035) (0.045) (0.041) (0.043)

Baseline Yes No No No
Sun & Abraham No Yes No No
Callaway & Sant’Anna No No Yes No
Standard TWFE No No No Yes

Observations 69,174 69,174 69,174 69,174

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from four separate Spatial Difference-in-Differences (DiD) regres-
sions estimating the impact of fuel treatments on the probability of fire spread, conditional
on a plot not yet being extinguished. Each regression applies a different DiD estimator
to our baseline sample. The coefficient, Treatk, captures the estimated effect of a fuel
treatment located k distance bins (0.5 km each) from where the fire first encounters the
treatment in a given direction. Column 1 reports estimates using the imputation approach
of Borusyak et al. [25], column 2 follows Sun and Abraham [70], column 3 implements
Callaway and Sant’Anna [71], and column 4 applies a standard two-way fixed effects esti-
mator. Each regression includes fire-direction and distance-bin fixed effects, along with
controls for environmental conditions, economic factors, and suppression efforts, as detailed
in Table S4. We do not include controls in column 3 because the Callaway and Sant’Anna
approach does not allow for time-varying controls. The regressions are estimated using the
“didimputation” (column 1) [84], “fixest” (columns 2 & 4) [85], and “did” (column 3) [79]
packages in R. Standard errors are clustered at the fire level.
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Table S10: Spatial DiD Robustness Check - Alternative Treatment Thresh-
olds

Probability of Fire Spread
(1) (2) (3) (4) (5)

Treat0 -0.075∗∗∗ -0.158∗∗∗ -0.135∗∗∗ -0.063∗∗∗ -0.026∗∗

(0.029) (0.029) (0.021) (0.014) (0.010)
Treat1 -0.084∗∗ -0.083∗∗∗ -0.084∗∗∗ -0.075∗∗∗ -0.059∗∗∗

(0.041) (0.027) (0.022) (0.016) (0.017)
Treat2 0.050 -0.016 -0.096∗∗∗ -0.045∗ -0.015

(0.039) (0.031) (0.030) (0.024) (0.016)
Treat3 -0.013 -0.034 -0.030 0.000 0.026

(0.069) (0.041) (0.031) (0.022) (0.018)
Treat4 -0.002 0.056∗∗ 0.018 0.012 0.099∗∗∗

(0.085) (0.028) (0.035) (0.025) (0.018)

Baseline No No Yes No No
% Treated Threshold 100% 75% 50% 25% >0%

Observations 73,280 71,624 69,174 63,709 49,788
R2 0.44 0.44 0.45 0.47 0.51

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from five separate Spatial Difference-in-Differences (DiD) regressions
estimating the impact of fuel treatments on the probability of fire spread, conditional on a plot
not yet being extinguished. Each regression uses a different threshold for defining a treated
plot, where a plot is considered treated if X% of its area or X% of the area of the plot directly
in front of it (in the same direction but one distance bin closer to the origin) contains fuel
treatment. Columns 1-5 report estimates for thresholds of 100%, 75%, 50%, 25%, and 0 percent.
Our baseline estimates from use a threshold of 50%. The coefficient, Treatk, captures the
estimated effect of a fuel treatment located k distance bins (0.5 km each) from where the fire
first encounters the treatment in a given direction. All samples include wildfires that intersect
with USFS fuel treatments between 2017 and 2023, and observations treated more than 2.5
km away are excluded. Each regression includes fire-direction and distance-bin fixed effects,
along with controls for environmental conditions, economic factors, and suppression efforts, as
detailed in Table S4. Spatial DiD estimates are estimated using the imputation approach from
[25] using the “didimputation” [84] package in R. Standard errors are clustered at the fire level.
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Table S11: Spatial DiD Robustness Check - Changing the Event
Window

Probability of Fire Spread
(1) (2) (3) (4)

Treat0 -0.135∗∗∗ -0.123∗∗∗ -0.113∗∗∗ -0.107∗∗∗

(0.021) (0.021) (0.022) (0.022)
Treat1 -0.084∗∗∗ -0.072∗∗∗ -0.058∗∗ -0.052∗∗

(0.022) (0.022) (0.023) (0.023)
Treat2 -0.096∗∗∗ -0.083∗∗∗ -0.063∗∗ -0.058∗

(0.030) (0.030) (0.032) (0.032)
Treat3 -0.030 -0.015 0.016 0.021

(0.031) (0.031) (0.033) (0.033)
Treat4 0.018 0.036 0.070∗ 0.069∗

(0.035) (0.037) (0.040) (0.040)

Baseline Yes No No No
Event Window 2.5 km 4 km 7 km 14 km

Observations 69,174 69,845 70,633 71,094
R2 0.45 0.45 0.45 0.45

*p < 0.10; **p < 0.05; ***p < 0.01.
The table presents results from four separate Spatial Difference-in-Differences
(DiD) regressions estimating the impact of fuel treatments on the probability of
fire spread, conditional on a plot not yet being extinguished. Each regression is
estimated on a different event window threshold. The coefficient, Treatk, captures
the estimated effect of a fuel treatment located k distance bins (0.5 km each)
from where the fire first encounters the treatment in a given direction. All sam-
ples include wildfires that intersect with USFS fuel treatments between 2017 and
2023, and observations treated more than X km away are excluded based on the
event window size. Columns 1-4 report estimates for event window sizes of 2.5, 4,
7, and 14 kilometers, where event window size 2.5 km is our baseline. Each regres-
sion includes fire-direction and distance-bin fixed effects, along with controls for
environmental conditions, economic factors, and fire suppression efforts as detailed
in Table S4. Spatial DiD estimates are estimated using the imputation approach
from [25] using the “didimputation” [84] package in R. Standard errors are clus-
tered at the fire level.

57


	Estimating treatment effects
	Investigating parallel trends
	Challenges for causal identification
	Sensitivity analysis
	Ex-ante benefit-cost ratio
	Estimating damages
	Limitations
	Acknowledgements
	Supplementary information

	Large Airtanker Drop Locations Data
	NIFC Containment Line Data
	Implementing Minimum Travel Time Simulations

